I'm pretty sure they come closer, and on the small chance i'm wrong, they separate.<span />
Answer:

Explanation:
Given that:
The Half-life of
=
is less than that of 
Although we are not given any value about the present weight of
.
So, consider the present weight in the percentage of
to be y%
Then, the time elapsed to get the present weight of
= 
Therefore;

here;
= Number of radioactive atoms relating to the weight of y of 
Thus:

--- (1)
However, Suppose the time elapsed from the initial stage to arrive at the weight of the percentage of
to be = 
Then:
---- (2)
here;
= Number of radioactive atoms of
relating to 3.0 a/o weight
Now, equating equation (1) and (2) together, we have:

replacing the half-life of
=
( since
)
∴

The time elapsed signifies how long the isotopic abundance of 235U equal to 3.0 a/o
Thus, The time elapsed is 
Wave length measures the width of the wave
Explanation:
Apply the mass of balance as follows.
Rate of accumulation of water within the tank = rate of mass of water entering the tank - rate of mass of water releasing from the tank



[/tex]\frac{dh}{dt} + \frac{0.01}{0.01}h[/tex] = 

+ h = 1
= 1 - h
= dt
= t + C
Given at t = 0 and V = 0
= 0
or, h = 0
-ln(1 - h) = t + C
Initial condition is -ln(1) = 0 + C
C = 0
So, -ln(1 - h) = t
or, t =
........... (1)
(a) Using equation (1) calculate time to fill the tank up to 0.6 meter from the bottom as follows.
t =
t =
= 
= 0.916 seconds
(b) As maximum height of water level in the tank is achieved at steady state that is, t =
.
1 - h = exp (-t)
1 - h = 0
h = 1
Hence, we can conclude that the tank cannot be filled up to 2 meters as maximum height achieved is 1 meter.