There are 10 hydrogen atoms that bind and there are 2 pairs of free electrons in the non-binding O atom
<h3>Further explanation</h3>
Aldehydes are alkane-derived compounds containing carbonyl groups (-CO-) where one bond binds to an alkyl group while another binds to a hydrogen atom.
The general structure is R-CHO with the molecular formula :

Naming is generally the same as the alkane by replacing the suffix with -al
Butanal or butyraldehyde is an aldehyde which has 4 C atoms
Inside the structure there are 3 atoms involved in bonding:
- 1. Atom C with 4 valence electrons, requires 4 electrons to reach the octet
- 2. Atom O with 6 valence electrons, requires 2 electrons to reach the octet
- 3. Atom H with 1 valence electron, requires 1 electron to reach a duplet
In describing Lewis's structure the steps that can be taken are:
- 1. Count the number of valence electrons from atoms in a molecule
- 2. Give each bond a pair of electrons
- 3. The remaining electrons are given to the atomic terminal so that an octet is reached
- 4. The remaining electrons that still exist in the central atom
- 5. If the central atom is not yet octet, free electrons are drawn to the central atom to form double bonds
In the Butanal structure (C₄H₈O) there is 1 double bond of the functional group (-CHO) between the C atom and the O atom
<h3>Learn more:
</h3>
Adding electron dots
brainly.com/question/6085185
Ionic bonding
brainly.com/question/1603987
Formal charge
brainly.com/question/7190235
Keywords: butanal, aldehyde, Lewis structure, a valence electron
Answer: increases
Explanation:
Matter exists in three different states, they are solids, liquids and gases. And each of them contains molecules with a certain amount of kinetic energy.
Hence, the addition of heat changes a substance from a liquid to a gas through a process called vaporization, whereby liquid molecules on changing to gases acquire a higher kinetic energy, and move more freely within the containing vessel.
Thus, the higher kinetic energy explains the increase in the average distance between molecules.
If Ka for HBrO is 2. 8×10^−9 at 25°C, then the value of Kb for BrO− at 25°C is 3.5× 10^(-6).
<h3>
What is base dissociation constant?
</h3>
The base dissociation constant (Kb) is defined as the measurement of the ions which base can dissociate or dissolve in the aqueous solution. The greater the value of base dissociation constant greater will be its basicity an strength.
The dissociation reaction of hydrogen cyanide can be given as
HCN --- (H+) + (CN-)
Given,
The value of Ka for HCN is 2.8× 10^(-9)
The correlation between base dissociation constant and acid dissociation constant is
Kw = Ka × Kb
Kw = 10^(-14)
Substituting values of Ka and Kw,
Kb = 10^(-14) /{2.8×10^(-9) }
= 3.5× 10^(-6)
Thus, we find that if Ka for HBrO is 2. 8×10^−9 at 25°C, then the value of Kb for BrO− at 25°C is 3.5× 10^(-6).
DISCLAIMER: The above question have mistake. The correct question is given as
Question:
Given that Ka for HBrO is 2. 8×10^−9 at 25°C. What is the value of Kb for BrO− at 25°C?
learn more about base dissociation constant:
brainly.com/question/9234362
#SPJ4
Answer:
Explanation:
The states that all of the particles that make up matter are constantly in motion. As a result, all particles in matter have kinetic energy. The kinetic theory of matter helps explain the different states of matter—solid, liquid, and gas. ... Particles do not always move at the same speed.