Answer:
The mass of the another block is 60 kg.
Explanation:
Given that,
Mass of block M= 100 kg
Height = 1.0 m
Time = 0.90 s
Let the mass of the other block is m.
We need to calculate the acceleration of each block
Using equation of motion

Put the value into the formula



We need to calculate the mass of the other block
Using newton's second law
The net force of the block M

....(I)
The net force of the block m

Put the value of T from equation (I)



Put the value into the formula


Hence, The mass of the another block is 60 kg.
C.) Mitochondria is the answer...
The velocity of tennis racket after collision is 14.96m/s
<u>Explanation:</u>
Given-
Mass, m = 0.311kg
u1 = 30.3m/s
m2 = 0.057kg
u2 = 19.2m/s
Since m2 is moving in opposite direction, u2 = -19.2m/s
Velocity of m1 after collision = ?
Let the velocity of m1 after collision be v
After collision the momentum is conserved.
Therefore,
m1u1 - m2u2 = m1v1 + m2v2


Therefore, the velocity of tennis racket after collision is 14.96m/s
Answer:
The answer is 4x³ + 6x²
<u>-TheUnknownScientist</u><u> 72</u>
Benthos
Option b is the answer