A mass suspended from a spring is oscillating up and down, (as stated but not indicated).
A). At some point during the oscillation the mass has zero velocity but its acceleration is non-zero (can be either positive or negative). <em>Yes. </em> This statement is true at the top and bottom ends of the motion.
B). At some point during the oscillation the mass has zero velocity and zero acceleration. No. If the mass is bouncing, this is never true. It only happens if the mass is hanging motionless on the spring.
C). At some point during the oscillation the mass has non-zero velocity (can be either positive or negative) but has zero acceleration. <em>Yes.</em> This is true as the bouncing mass passes through the "zero point" ... the point where the upward force of the stretched spring is equal to the weight of the mass. At that instant, the vertical forces on the mass are balanced, and the net vertical force is zero ... so there's no acceleration at that instant, because (as Newton informed us), A = F/m .
D). At all points during the oscillation the mass has non-zero velocity and has nonzero acceleration (either can be positive or negative). No. This can only happen if the mass is hanging lifeless from the spring. If it's bouncing, then It has zero velocity at the top and bottom extremes ... where acceleration is maximum ... and maximum velocity at the center of the swing ... where acceleration is zero.
Answer:
Yes, I think
Explanation:
Melting is a process that causes a substance to change from a solid to a liquid. Melting occurs when the molecules of a solid speed up enough that the motion overcomes the attractions so that the molecules can move past each other as a liquid.
Question:
A wire 2.80 m in length carries a current of 5.20 A in a region where a uniform magnetic field has a magnitude of 0.430 T. Calculate the magnitude of the magnetic force on the wire assuming the following angles between the magnetic field and the current.
(a)60 (b)90 (c)120
Answer:
(a)5.42 N (b)6.26 N (c)5.42 N
Explanation:
From the question
Length of wire (L) = 2.80 m
Current in wire (I) = 5.20 A
Magnetic field (B) = 0.430 T
Angle are different in each part.
The magnetic force is given by

So from data

Now sub parts
(a)

(b)

(c)

The Virtual Laboratory is an interactive environment for creating and conducting simulated experiments: a playground for experimentation. It consists of domain-dependent simulation programs, experimental units called objects that encompass data files, tools that operate on these objects