Explanation:
guxxxhchclcyffktx
oye hoye thanks for point ✌✌✌✌✌
3.33 seconds.
<u>Explanation:</u>
We can find the speed of the body using the formula,
Speed = Distance traveled in meters / time taken in seconds
= 450 m / 30 seconds
= 15 m/s
So per second the distance traveled by the body is 15 m.
So time needed to travel 50 m can be found as,
time = distance/speed
= 50 m / 15 m /s
= 3.33 s
You are running at constant velocity in the x direction, and based on the 2D definition of projectile motion, Vx=Vxo. In other words, your velocity in the x direction is equal to the starting velocity in the x direction. Let's say the total distance in the x direction that you run to catch your own ball is D (assuming you have actual values for Vx and D). You can then use the range equation, D= (2VoxVoy)/g, to find the initial y velocity, Voy. g is gravitational acceleration, -9.8m/s^2. Now you know how far to run (D), where you will catch the ball (xo+D), and the initial x and y velocities you should be throwing the ball at, but to find the initial velocity vector itself (x and y are only the components), you use the pythagorean theorem to solve for the hypotenuse. Because you know all three sides of the triangle, you can also solve for the angle you should throw the ball at, as that is simply arctan(y/x).
<span>Stress
Stress is a condition of mental strain or pressure on the body and coming about because of unfavorable or demanding conditions that the person cannot handle at that moment.</span>
Gravitational force between two masses is given by formula

here we know that




now from the above equation we will have


so above is the gravitational force between car and the person