The heart rate will likely decrease. As the cardiac muscle, or heart, gets stronger, it takes less effort to pump more blood. As a result, the heart will probably beat less, decreasing the heart rate. This is why athletes often have lower heart rates than the average person.
<span>Let F be the force of gravity, G be the gravitational constant, M be the mass of the earth, m your mass and r the radius of the earth, then:
F = G(Mm / (4(pi)*r^2))
The above expression gives the force that you feel on the earth's surface, as it is today!
Let us now double the mass of the earth and decrease its diameter to half its original size.
This is the same as replacing M with 2M and r with r/2.
Now the gravitational force (F' ) on the new earth's surface is given by:
F' = G(2Mm / (4(pi)(r/2)^2)) = 2G(Mm / ((1/4)*4(pi)*r^2)) = 8G(Mm / (4(pi)*r^2)) = 8F
So:
F' = 8F
This implies that the force that you would feel pulling you down (your weight) would increase by 800%!
You would be 8 times heavier on this "new" earth!</span>
Answer:
time rising = 34 / 9.8 = 3.47 sec
total time in air = 2 * 3.47 sec = 6.94 sec
(time rising must equal time falling)
R = 17 m/s * 6.94 s = 118 m
Can also use range formula
R = v^2 sin (2 theta) / g
tan theta = 34 / 17 = 2
theta = 63.4 deg
2 theta = 126.9 deg
sin 126.9 = .8
v^2 = 17^2 + 34^2 = 1445 m^2/s^2
R = 1445 * .8 / 9.8 = 118 m agreeing with answer found above