Answer:
the answer is C
Explanation:
we know this because if you compare the graphs and look at the direction. it isn't always in the explanation or the few sentences they gave you at the top. also, look at the waves, you can see in Davids drawing that it is directly straight up, A and B do not represent that. A isn't even a valid answer. Notice also in A that the arrow is going in the completely different direction than in Davids drawing. B is also going a different direction even though it is only turned a little bit although if it was straight up like Davids drawing then it would most likely be a correct answer. C does have one arrow going a different direction but look at how it has two, showing in which if the waves were to turn then the arrow is still valid
Answer:
a) According to Newton's law of gravitation, as the distance between the Moon and the Earth decreases, the gravitational attraction increases and vice versa
The gravitational force of the Moon on the Earth causes the Earth to be slightly bulged on the side directly facing the Moon
The gravitational force also pulls the water bodies on the Earth's surface towards the Moon in the same manner and the effect is more pronounced due to the ability of the liquid water to assume a shape based on the magnitude of the gravitational field attracting it
Therefore, the region where the Moon is closest to the Earth we have a high tide as the water level rises and the region which is perpendicular to where the Moon is located has a low tide
b) The two special types of tides are
1) The neap tide
2) The spring tide
Neap tide
Neap tide occurs when the Sun and Moon are 90° apart from each other when they are viewed by an observer from Earth
The gravitational pull of the Sun cancels (partially) the effect of the gravitational pull and tidal force of the Moon, resulting in minimum tidal range
Spring Tide
Spring tide occurs when the Earth, the Moon, and the Sun are simultaneously inline, such that the Sun reinforces the gravitational pull and tidal force of the Moon, resulting in a maximum tidal range
Explanation: