Answer:

Explanation:
The volume and amount of gas are constant, so we can use Gay-Lussac’s Law:
At constant volume, the pressure exerted by a gas is directly proportional to its temperature.

Data:
p₁ =5.7 atm; T₁ = 100.0 °C
p₂ = ?; T₂ = 20.0 °C
Calculations:
1. Convert the temperatures to kelvins
T₁ = (100.0 + 273.15) K = 373.15
T₂ = (20.0 + 273.15) K = 293.15
2. Calculate the new pressure

Copper II sulfate solution is blue.
You are correct, but you needn't worry about the signs so much. Just remember that the negative sign is used to denote a loss of energy; since the water is hotter, it will be losing energy (-Q) and the iron will gain energy (Q). Now, we substitute the values:
-149.3 * 4.184 * (T - 95) = 412 * 0.44 * (T - 5)
Solving this equation for T,
T = 74.8 °C
The atomic mass of Europium is 152 amu
Work:
151(0.4803) = 72.52 amu
153(0.5197) = 79.5 amu
72.5 + 79.5 = 152 amu
Nonmetals which are located in the second row form pi bonds
more easily than the elements situated in the third row and below. Actually there
are no compounds or molecules known that forms covalent bonds to the noble gas
Ne and Ar. Hence the other second row element which is Carbon, is the element that
forms
pi bonds most readily.
Answer:
<span>C</span>