2.71 m/s fast Hans is moving after the collision.
<u>Explanation</u>:
Given that,
Mass of Jeremy is 120 kg (
)
Speed of Jeremy is 3 m/s (
)
Speed of Jeremy after collision is (
) -2.5 m/s
Mass of Hans is 140 kg (
)
Speed of Hans is -2 m/s (
)
Speed of Hans after collision is (
)
Linear momentum is defined as “mass time’s speed of the vehicle”. Linear momentum before the collision of Jeremy and Hans is
= 
Substitute the given values,
= 120 × 3 + 140 × (-2)
= 360 + (-280)
= 80 kg m/s
Linear momentum after the collision of Jeremy and Hans is
= 
= 120 × (-2.5) + 140 × 
= -300 + 140 × 
We know that conservation of liner momentum,
Linear momentum before the collision = Linear momentum after the collision
80 = -300 + 140 × 
80 + 300 = 140 × 
380 = 140 × 
380/140= 
= 2.71 m/s
2.71 m/s fast Hans is moving after the collision.
Explanation:
so sorry
don't know but please mark me as brainliest please
Answer:
Part A
Coriolis effect is used to describe how objects which are not fixed to the ground are deflected as they travel over long distances due to the rotation of the Earth relative to the 'linear' motion of the objects
Due to the Coriolis effect the wind flowing towards the Equator from high pressure belts in the subtropical regions in both the Northern and Southern Hemispheres are deflected towards the western direction because the Earth rotates on its axis towards the east
Part B
In the Northern Hemispheres, the winds are known as northeasterly trade winds and in the Southern Hemisphere, they are known as the southeasterly trade wind. Therefore, Coriolis effect has the same effect on the direction of the Trade Winds in the Southern Hemisphere as it does in the Northern Hemisphere
Explanation: