Force equals mass*distance
F = ma
Given m = 10 kg, F = 30 N
30 = 10a
30/10 = a
3 = a
The wagon's acceleration is 3 m/s^2
Work = force x distance
You can see time doesn’t matter (if we were talking about power, which is the RATE at which work is performed, that would be a different story).
W = 2 x 5 = 10 foot-pounds of work
Foot-pounds are gross units. Better to work in SI units when you can!
Answer:
m=146.277kg which is rounded to 146kg
Explanation:
Remember that F=ma
But F represents not 250N, but 250cos(35)N since the force is being pulled above the horizontal.
So 250cos(35)=204.7880111 approximately, and since a=1.4m/s^2, we have 204.7880111=m(1.4m/s^2). Then we divide both sides by the acceleration to get the mass. So m=146.2771508kg which the nearest number is 146kg
Mass is always in kg, unless stated otherwise.
Answer:
The potential difference across the plates is 226 V.
Explanation:
Given;
area of the capacitor plate, A = 0.2 m²
separation, d = 0.1 mm = 0.1 x 10⁻³ m
charge on each plate, Q = 4 x 10⁻⁶ C
Charge on the capacitor is given by;
Q = CV
Where;
C is the capacitance of the capacitor, given as;
C = ε₀A / d
Then, the potential difference across the plates is given by;

Therefore, the potential difference across the plates is 226 V.
Answer:
the angle is given by
Tan theta = 35/59 = 0.59
so theta = Tan ^-1 ( 0.59 )
theta = 30.54 deg.