The velocity of shortening refers to the speed of the contraction from
the muscle shortening while lifting a load. The relationship between the
resistance and velocity of shortening is inverse. The greater the
resistance, the shorter the velocity of shortening and the smaller the
resistance, the larger the velocity of shortening.
Hopefully this help :)
Answer:
M1 V1 = M1 V2 + M2 V3 conservation of momentum
V2 = (M1 V1 - M2 V3) / M1 where V2 = speed of M1 after impact
V2 = (3 * 9 - 1.5 * 5) / 9 = (27 - 7.5) / 9 = 2.17 m/s
Note: All speeds are in the same direction and have the same sign
Explanation:
If you write it in English so I can help u if you need it
The box is accelerated from rest to 4 m/s in a matter of 2.5 s, so its acceleration <em>a</em> is such that
4 m/s = <em>a</em> (2.5 s) → <em>a</em> = (4 m/s) / (2.5 s) = 1.6 m/s²
Then the force applied to the box has a magnitude <em>F</em> such that
<em>F</em> = (10 kg) (1.6 m/s²) = 16 N
Ignoring air resistance, the bullet's horizontal velocity is constant:

In 1.3 seconds, we can expect it to travel
