N = ?
T = 449 K
V = 58.35 L
P =2.97
R = 0.082
Use the clapeyron equation:
P x V = n x R x T
2.97 x 58.35 = n x 0.082 x 449
173.2995 = n x 36.818
n = 173.2995 / 36.818
n = 4.70 moles
hope this helps!
Answer:
The answer to your question is: b. P - Br
Explanation:
Difference of electronegativities from the periodic table. The one with the highest electronegativity will be the most polar.
a.
H = 2.2
Se = 2.55
Electronegativity = 2.55 - 2.2 = 0.35
b.
P = 2.19
Br = 2.96
Electronegativity = 2.96 - 2.19 = 0.77
c.
N = 3.04
I = 2.66
Electronegativity = 3.04 - 2.66 = 0.38
Answer:
Explanation:
From the given information:
The density of O₂ gas = 
here:
P = pressure of the O₂ gas = 310 bar
= 
= 305.97 atm
The temperature T = 415 K
The rate R = 0.0821 L.atm/mol.K
molar mass of O₂ gas = 32 g/mol
∴

= 287.37 g/L
To find the density using the Van der Waal equation
Recall that:
the Van der Waal constant for O₂ is:
a = 1.382 bar. L²/mol² &
b = 0.0319 L/mol
The initial step is to determine the volume = Vm
The Van der Waal equation can be represented as:

where;
R = gas constant (in bar) = 8.314 × 10⁻² L.bar/ K.mol
Replacing our values into the above equation, we have:



After solving;
V = 0.1152 L
∴

= 277.77 g/L
We say that the repulsive part of the interaction potential dominates because the results showcase that the density of the Van der Waals is lesser than the density of ideal gas.
this equation does support the law of conservation of mass.
Answer:
6.208 mol
Explanation:
Mass of Bromine Liquid = 496g
Number of moles = ?
Relationship between number of moles and mass is given as;
Number of moles = Mass / Molar mass
Molar mass of Bromine = 79.9g
Number of moles = 496 / 79.9 = 6.208 mol