Answer:
Option C. 0.34 moles
Explanation:
Data obtained from the question include:
Molarity = 0.15M
Volume = 2.25L
Mole =
Molarity = mole /Volume
Mole = Molarity x Volume
Mole = 0.15 x 2.25
Mole = 0.34mole
The number of mole of AlCl3 present in the solution is 0.34mole.
Answer:
The answer to your question is: 58.4 g of NaCl
Explanation:
Data
Volume = 200 ml = 0.2 l
Concentration = 5M
MW = 58.4 g
mass NaCl = ?
Formula
Molarity = (# of moles ) / volume
# of moles = Molarity x volume
# of moles = 5 x 0.2
# of moles = 1
58.4 g ---------------------- 1 mol
x --------------------- 1 mol
x = (1 x 58.4) / 1
x = 58.4 g of NaCl
Answer:
1.414 Moles
Solution:
Data Given:
Mass of MgS₂O₃ = 193 g
M.Mass of MgS₂O₃ = 136.43 g.mol⁻¹
Moles = ?
Formula Used:
Moles = Mass ÷ M.Mass
Putting values,
Moles = 193 g ÷ 136.43 g.mol⁻¹
Moles = 1.414 mol
4.22 grams.
1. First find out how much AgNO3 weighs with one mole (107.87 g Ag + 14.007 g N + 48 g O = 169.89 grams)
2. Find the percent of Ag you have. So, (107.87 g/mol Ag)/(169.89 g/mol AgNO3)= 0.63 * 100 = 63%.
3. If you have 6.7 grams total, you know 63% of it is going to be silver, so just multiply 6.7 grams by .63 and you get 4.22 g Ag
The position is the strength of the magnetic field strongest is is the place where the magnetic field leaves, being point A.
<h3>What generates a magnetic field?</h3>
When an electrically charged particle moves, it creates a magnetic field. According to the laws of electromagnetism, this magnetic field originates from the variation of the electric field strength.
In the region of the poles we see that the lines of magnetic induction are closer to each other, therefore, we consider that close to the poles the magnetic field is more intense.
See more about magentic field at brainly.com/question/14848188
#SPJ1