Answer:
When you heat an atom, some of its electrons are "excited* to higher energy levels. When an electron drops from one level to a lower energy level, it emits a quantum of energy. ... The different mix of energy differences for each atom produces different colours. Each metal gives a characteristic flame emission spectrum.
Explanation:
Answer:
protons : 10
electron : 10
neutron : 10
Explanation:
Protons will usually be the same as the electrons when its a <u>Atom</u> (when its a ion or covalent bond or simple bond they will most likely be different)
the atomic number represents protons and electrons
the mass number - the atomic number = neutron
Answer:
Detail is given below
Explanation:
Atomic radii trend along group:
As we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased.
As the size of atom increases the ionization energy from top to bottom also decreases because it becomes easier to remove the electron because of less nuclear attraction and as more electrons are added the outer electrons becomes more shielded and away from nucleus.
In A we can see that there is one positive charge and force of attraction is 2.30×10⁻⁸ N and distance is 0.10 nm
In B we can see that negative charge is further away from nucleus because of greater distance thus force of attraction will be less. 0.58×10⁻⁸ N
In C this distance further increases and force also goes in decreasing 0.26×10⁻⁸ N.
Answer:
12.7g of Cu
Explanation:
First let us generate a balanced equation for the reaction. This is illustrated below:
Zn + CuSO4 —> ZnSO4 + Cu
Molar Mass of Cu = 63.5g/mol
Molar Mass of CuSO4 = 63.5 + 32 + (16x4) = 63.5 + 32 + 64 = 159.5g/mol
From the equation,
159.5g of CuSO4 produced 63.5g of Cu.
Therefore, 31.9g of CuSO4 will produce = (31.9 x 63.5) / 159.5 = 12.7g of Cu