The velocity at the maximum height will always be 0. Therefore, you will count your final velocity as 0, and your initial velocity as 35 m/s. Next, we know that the acceleration will be 9.8 m/s^2. How? Because the ball is thrown directly upward, and the only force acting on it will be the force of gravity pushing it back down.
The formula we use is h = (Vf^2 - Vi^2) / (2*-9.8m/s^2)
Plugging everything in, we have h = (0-1225)/(19.6) = 62.5 meters is the maximum height.
Answer:
Answer: The spring constant of the spring is k = 800 N/m, and the potential energy is U = 196 J. To find the distance, rearrange the equation: The equation to find the distance the spring has been compressed is therefore: The spring has been compressed 0.70 m, which resulted in an elastic potential energy of U = 196 J being stored.
Explanation:
This is false. There were many times in history when people discovered something that they didn't even know was possible or didn't even plan to discover it. Knowing tradeoffs doesn't mean that something won't surprise you or that all will go according to plan.
The specific gravity of the object’s material is 5.09.
<h3>To calculate the specific gravity of the object:</h3>
Weight difference = 9 - 7.2 = 1.8 N = Buoyant force of water
Buoyant Force in water(Fb) = density of water x g x volume of the body(Vb)
1.8 = 1000 x 9.81 x Vb
Vb = 1.8/9810 cubic meter
Now, in the air;
Weight of body = mg = 9 N
Mass of body,m = 9/9.81 Kg
So,
Density of body = m/ Vb
= 9/9.81 ÷ 1.8/9810
= 5094.44 kg per cubic meter
The specific gravity of body = density of body ÷ density of water
= 5094.44 ÷ 1000
= 5.09
Therefore, Specific gravity of body = 5.09
Learn more about Specific gravity here:
brainly.com/question/13258933
#SPJ4
<span>net work = change in kinetic energy
for Block B, we just have the force from block A acting on it
F(ab)d= .5(1)vf² - .5(1)(2²)
F(ab)d= .5vf² - 2
Block A, we have the force from the hand going in one direction and the force of block B on A going the opposite direction
10-F(ba)d = .5(4)vf² - .5(4)(2²)
10-F(ba)d = 2vf² - 8
F(ba)d = 18 - 2vf²
now we have two equations:
F(ba)d = 18 - 2vf²
F(ab)d= .5vf² - 2
since the magnitude of F(ba) and F(ab) is the same, substitute and find vf (I already took into account the direction when solving for F(ab)
10-.5vf² + 2 = 2vf² - 8
12 - .5vf² = 2vf² - 8
20 = 2.5vf²
vf² = 8
they both will have the same velocity
KE of block A= .5(4)(2.828²) = 16 J
KE of block B=.5(1)(2.828²) = 4 J</span>