The balanced nuclear equations for the following:(a) β⁻ decay of silicon-32 is (27,14)Si -> (0,-1)beta + (27,15)P
<h3>
What is balanced nuclear equation?</h3>
A nuclear reaction is generally expressed by a nuclear equation, which has the general form, where T is the target nucleus, B is the bombarding particle, R is the residual product nucleus, and E is the ejected particle, and Ai and Zi (where I = 1, 2, 3, 4) are the mass number and atomic number, respectively. Finding a well balanced equation is critical for understanding nuclear reactions. Balanced nuclear equations provide excellent information about the energy released in nuclear reactions. Balancing the nuclear equation requires equating the total atomic number as well as the total mass number before and after the reaction using the rules of atomic number and mass number conservation in a nuclear reaction.
To learn more about nuclear equations visit:
brainly.com/question/12221598
#SPJ4
Answer:
geez I have no clue sorry
It can be found that 337.5 g of AgCl formed from 100 g of silver nitrate and 258.4 g of AgCl from 100 g of CaCl₂.
<u>Explanation:</u>
2AgNO₃ + CaCl₂ → 2 AgCl + Ca(NO₃)₂
We have to find the amount of AgCl formed from 100 g of Silver nitrate by writing the expression.

= 337.5 g AgCl
In the same way, we can find the amount of silver chloride produced from 100 g of Calcium chloride.
It can be found as 258.4 g of AgCl produced from 100 g of Calcium chloride.
1) Write the balaced chemical equation:
H2 + 2O2 → 2H2O
2) Infere the molar ratios:
1 mol H2 : 2 mol of water
3) Make the calculus as the direct proportion relation:
[2 mol H2O] / [1 mol H2] * 7 mol H2 = 14 mol H2
As you see you produce the double number of moles of H2O than number of moles of H2 used.
Answer: 14 moles