Answer:
The correct option is OA.
C2H4O2 + NaHCO3 - NaC2H302 + H2O + CO2
Explanation:
To solve this you have to check the number of elements in both sides of the equation.
Answer:
Density = mass/volume
= 44/22.4
= 1.96 gram/liter
The density of the Carbon Dioxide at S.T.P. (Standard Temperature and Volume) is 1.96 gram/liter.
Answer:
CH3COOH would be more concentrated
Explanation:
The higher the concentration value, the more concentrated it is.
The relationship between concentration, moles and volume is given by the equation;
Concentration = No of moles / Volume
5.0 grams of HCOOH dissolved in 189 mL of water
Number of moles = Mass / Molar mass = 5 / 46.03 = 0.1086 mol
Concentration = 0.1086 / 0.189 = 0.5746 mol/L
1.5 moles of CH3COOH dissolved in twice as much water
Volume = 2 * 189 = 378 ml = 0.378 L
Concentration = 1.5 / 0.378 = 3.9683 mol/L
Comparing both concentration values;
CH3COOH would be more concentrated
Answer:
A
Explanation:
I guess it's a, because nuclear decay is likely to occur when either the mass or atomic number is greater than 83.