The Rutherford–Bohr model of the hydrogen atom (Z = 1) or a hydrogen-like ion (Z > 1). In this model it is an essential feature that the photon energy (or frequency) of the electromagnetic radiation emitted (shown) when an electron jumps from one orbital to another, be proportional to the mathematical square of atomic charge (Z2). Experimental measurement by Henry Moseley of this radiation for many elements (from Z = 13 to 92) showed the results as predicted by Bohr. Both the concept of atomic number and the Bohr model were thereby given scientific credence. The atomic number is the number of _z_ an atom.
Colligative
properties calculations are used for this type of problem. Calculations are as
follows:<span>
</span>
<span>ΔT(freezing point)
= (Kf)m
ΔT(freezing point)
= 1.86 °C kg / mol (0.705)
ΔT(freezing point) = 1.3113 °C
</span>
<span>
</span>
<span>Hope this answers the question. Have a nice day.</span>
The factor that determine how water cycles on earth is the forms that water is found in[solid, liquid and gas].
Answer:
485.76 g of CO₂ can be made by this combustion
Explanation:
Combustion reaction:
2 C₄H₁₀(g) + 13 O₂ (g) → 8 CO₂ (g) + 10 H₂O (g)
If we only have the amount of butane, we assume the oxygen is the excess reagent.
Ratio is 2:8. Let's make a rule of three:
2 moles of butane can produce 8 moles of dioxide
Therefore, 2.76 moles of butane must produce (2.76 . 8)/ 2 = 11.04 moles of CO₂
We convert the moles to mass → 11.04 mol . 44g / 1 mol = 485.76 g