Answer:
Step-by-step explanation:
The equation of a straight line can be represented in the slope intercept form as
y = mx + c
Where
m represents the slope of the line
c represents the y intercept
The equation of the given line is
2x + 4y = 20
4y = - 2x + 20
Dividing through by 4, it becomes
y = - x/2 + 5
Comparing with the slope intercept form, slope = - 1/2
If two lines are parallel, it means that they have the same slope. Therefore, the slope of the line passing through (- 6, 3) is - 1/2
To determine the y intercept, we would substitute m = - 1/2, x = - 6 and y = 3 into y = mx + c. It becomes
3 = - 1/2 × - 6 + c
3 = 3 + c
c = 3 - 3 = 0
The equation becomes
y = - x/2
Answer:
The ferris wheel travelled 434.717 ft.
Step-by-step explanation:
Assuming that the ferris wheel is a perfect circle, then it's height is the same as the diameter of the circle, therefore it's radius is:
radius = height/2 = 246/2 = 123 ft
The distance travelled by the ferris wheel is the same as the length of the arc created by a angle of (9pi/8). The length of an arc is given by:
length = r*(angle in radians)
length = 123*(9pi/8)
length = 434.717 ft
The ferris wheel travelled 434.717 ft.
By algebra properties we find the following relationships between each pair of algebraic expressions:
- First equation: Case 4
- Second equation: Case 1
- Third equation: Case 2
- Fourth equation: Case 5
- Fifth equation: Case 3
<h3>How to determine pairs of equivalent equations</h3>
In this we must determine the equivalent algebraic expression related to given expressions, this can be done by applying algebra properties on equations from the second column until equivalent expression is found. Now we proceed to find for each case:
First equation
(7 - 2 · x) + (3 · x - 11)
(7 - 11) + (- 2 · x + 3 · x)
- 4 + (- 2 + 3) · x
- 4 + (1) · x
- 4 + (5 - 4) · x
- 4 - 4 · x + 5 · x
- 4 · (x + 1) + 5 · x → Case 4
Second equation
- 7 + 6 · x - 4 · x + 3
(6 · x - 4 · x) + (- 7 + 3)
(6 - 4) · x - 4
2 · x - 4
2 · (x - 2) → Case 1
Third equation
9 · x - 2 · (3 · x - 3)
9 · x - 6 · x + 6
3 · x + 6
(2 + 1) · x + (14 - 8)
[1 - (- 2)] · x + (14 - 8)
(x + 14) - (8 - 2 · x) → Case 2
Fourth equation
- 3 · x + 6 + 4 · x
x + 6
(5 - 4) · x + (7 - 1)
(7 + 5 · x) + (- 4 · x - 1) → Case 5
Fifth equation
- 2 · x + 9 + 5 · x + 6
3 · x + 15
3 · (x + 5) → Case 3
To learn more on algebraic equations: brainly.com/question/24875240
#SPJ1