Answer:
Acceleration, 
Explanation:
Given that,
Height from a ball falls the ground, h = 17.3 m
It is in contact with the ground for 24.0 ms before stopping.
We need to find the average acceleration the ball during the time it is in contact with the ground.
Firstly, find the velocity when it reached the ground. So,

u = initial velocity=0 m/s
a = acceleration=g

It is in negative direction, u = -18.41 m/s
Let a is average acceleration of the ball. Consider, v = and u = -18.41 m/s.

So, the average acceleration of the ball during the time it is in contact is
.
It often requires STANDARD reaction time
Answer:
The formula for potential energy depends on the force acting on the two objects. For the gravitational force the formula is P.E. = mgh, where m is the mass in kilograms, g is the acceleration due to gravity (9.8 m / s2 at the surface of the earth) and h is the height in meters.
Explanation:
Sub to Beast_Building on yt
Answer:
0.5639m
Explanation:
For a young double slit experiment the expression below gives the angular separation for m dark fringe having slit width d and wavelength λ
=sin⁻¹(mλ/d)
mλ /d =y/L
for the first order,
y= mλL/d
For ratio separation y₀/yD=1 and d= 1
y₀/yD= [mλ ₀L₀/d]/[mλD.LD./d]
1=λ ₀L₀/λD.LD.
λD.LD= λ ₀L₀
L₀= λD.LD/ λ ₀..............(1)
Then substitute the given values into (1) we have
L₀=471 *0.497/611
= 0.3831m
Distance by which the screen has to be moved towards the slit is
LD- Lo
0.947-0.3831= 0.5639m