Explanation:
The sun's gravitational force is very strong. If it were not, a planet would move in a straight line out into space. The sun's gravity pulls the planet toward the sun, which changes the straight line of direction into a curve. This keeps the planet moving in an orbit around the sun
Assuming that the angle is the same for both ropes, then D. is the answer. You have to consider also if the ropes are close together or far apart and if the force to move the object is in line with the ropes or perpendicular to them.
<span />
Answer and Explanation:
This experiment is known as Lenz's tube.
The Lenz tube is an experiment that shows how you can brake a magnetic dipole that goes down a tube that conducts electric current. The magnet, when falling, along with its magnetic field, will generate variations in the magnetic field flux within the tube. These variations create an emf induced according to Faraday's Law:

This emf induced on the surface of the tube generates a current within it according to Ohm's Law:

This emf and current oppose the flux change, therefore a field will be produced in such a direction that the magnet is repelled from below and is attracted from above. The magnitude of the flux at the bottom of the magnet increases from the point of view of the tube, and at the top it decreases. Therefore, two "magnets" are generated under and above the dipole, which repel it below and attract above. Finally, the dipole feels a force in the opposite direction to the direction of fall, therefore it falls with less speed.
The proof that the earth is rotating is the happens of night and day also the seasons, eg. winter, summer, autumn.
Answer:
As the tines of the tuning fork vibrate at their own natural frequency, they created sound waves that impinge upon the opening of the resonance tube. These impinging sound waves produced by the tuning fork force air inside of the resonance tube to vibrate at the same frequency.