1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
UkoKoshka [18]
3 years ago
11

The force F is expressed in terms of the mass “m” and acceleration “a” according to the

Physics
1 answer:
LekaFEV [45]3 years ago
5 0

Answer:

F = [M] × [L1 T-2] = M1 L1 T-2.

Explanation:

Therefore, Force is dimensionally represented as M1 L1 T-2.

You might be interested in
One problem with weight training as a way to improve overall health is that the results of a weight-training program are not mea
Ede4ka [16]

One problem with weight training as a way to improve overall health is that the results of a weight-training program are not measurable.

B.False

5 0
3 years ago
Read 2 more answers
A particle initially located at the origin has an acceleration of vector a = 2.00ĵ m/s2 and an initial velocity of vector v i =
natali 33 [55]

With acceleration

\mathbf a=\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)\,\mathbf j

and initial velocity

\mathbf v(0)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i

the velocity at time <em>t</em> (b) is given by

\mathbf v(t)=\mathbf v(0)+\displaystyle\int_0^t\mathbf a\,\mathrm du

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\displaystyle\int_0^t\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)\,\mathbf j\,\mathrm du

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\bigg|_{u=0}^{u=t}

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)t\,\mathbf j

We can get the position at time <em>t</em> (a) by integrating the velocity:

\mathbf x(t)=\mathbf x(0)+\displaystyle\int_0^t\mathbf v(u)\,\mathrm du

The particle starts at the origin, so \mathbf x(0)=\mathbf0.

\mathbf x(t)=\displaystyle\int_0^t\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\,\mathrm du

\mathbf x(t)=\left(\left(8.00\dfrac{\rm m}{\rm s}\right)u\,\mathbf i+\dfrac12\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u^2\,\mathbf j\right)\bigg|_{u=0}^{u=t}

\mathbf x(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)t\,\mathbf i+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)t^2\,\mathbf j

Get the coordinates at <em>t</em> = 8.00 s by evaluating \mathbf x(t) at this time:

\mathbf x(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)(8.00\,\mathrm s)\,\mathbf i+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)(8.00\,\mathrm s)^2\,\mathbf j

\mathbf x(8.00\,\mathrm s)=(64.0\,\mathrm m)\,\mathbf i+(64.0\,\mathrm m)\,\mathbf j

so the particle is located at (<em>x</em>, <em>y</em>) = (64.0, 64.0).

Get the speed at <em>t</em> = 8.00 s by evaluating \mathbf v(t) at the same time:

\mathbf v(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)(8.00\,\mathrm s)\,\mathbf j

\mathbf v(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(16.0\dfrac{\rm m}{\rm s}\right)\,\mathbf j

This is the <em>velocity</em> at <em>t</em> = 8.00 s. Get the <em>speed</em> by computing the magnitude of this vector:

\|\mathbf v(8.00\,\mathrm s)\|=\sqrt{\left(8.00\dfrac{\rm m}{\rm s}\right)^2+\left(16.0\dfrac{\rm m}{\rm s}\right)^2}=8\sqrt5\dfrac{\rm m}{\rm s}\approx17.9\dfrac{\rm m}{\rm s}

5 0
3 years ago
Given that the concentration of bovine carbonic anhydrase is 3.3 pmol ⋅ L − 1 and R max ( V max ) = 222 μmol ⋅ L − 1 ⋅ s − 1 , d
LuckyWell [14K]

Answer:

The turnover number of the enzyme molecule bovine carbonic anhydrase = 67,272,727.27 s^–1.

Explanation:

Given:

The concentration of bovine carbonic anhydrase = total enzyme concentration = Et = 3.3 pmol⋅L^–1 = 3.3 × 10^–12 mol.L^–1

The maximum rate of reaction = Rmax (Vmax) = 222 μmol⋅L^–1⋅s^–1 = 222 × 10^–6 mol.L^–1⋅s^–1

The formula for the turnover number of an enzyme (kcat, or catalytic rate constant) = Rmax ÷ Et = 222 × 10^–6 mol.L^–1⋅s^–1 ÷ 3.3 × 10^–12 mol.L^–1 = 67,272,727.27 s^–1

Therefore, the turnover number of the enzyme molecule bovine carbonic anhydrase = 67,272,727.27 s^–1

3 0
4 years ago
A laser emits light at power 6.20 mW and wavelength 633 nm. The laser beam is focused (narrowed) until its diameter matches the
Ipatiy [6.2K]

Answer:

a) S = 1.69 10⁹ W/m², b)  P = 5.63 Pa , c) F = 20.6 10⁻¹² N

Explanation:

a) The intensity defined as the energy per unit area

    S = U / A

Area of ​​a circle is

    W = 6.2 mw = 6.2 10-3 W

    R = 1080 nm = 1080 10⁻⁹ m  = 1.080 10⁻⁶ m

   A = π R2

   A = π (1,080 10⁻⁶)²

   A = 3.66 10 -12 m²

   S = 6.2 10-3 / 3.66 10-12

   S = 1.69 10⁹ W / m²

b) The radiation pressure

   P = 1 / c (dU / dt) / A

   S = (dU / dt) / A

   

   P = S / c

   P = 1.69 10 9 / 3. 108

   P = 5.63 Pa

c) the definition of pressure is force over area

   P = F / A

   F = P A

   F = 5.63 3.66 10⁻¹²

   F = 20.6 10⁻¹² N

d) for this we use Newton's second law

   F = ma

   a = F / m

8 0
3 years ago
calculate the time rate of change in air density during expiration. Assume that the lung has a total volume of 6000mL, the diame
kipiarov [429]

Answer:

The time rate of change in air density during expiration is 0.01003kg/m³-s

Explanation:

Given that,

Lung total capacity V = 6000mL = 6 × 10⁻³m³

Air density p = 1.225kg/m³

diameter of the trachea is 18mm = 0.018m

Velocity v = 20cm/s = 0.20m/s

dv /dt = -100mL/s (volume rate decrease)

= 10⁻⁴m³/s

Area for trachea =

\frac{\pi }{4} d^2\\= 0.785\times 0.018^2\\= 2.5434 \times10^-^4m^2

0 - p × Area for trachea =

\frac{d}{dt} (pv)=v\frac{ds}{dt} + p\frac{dv}{dt}

-1.225\times2.5434\times10^-^4\times0.20=6\times10^-^3\frac{ds}{dt} +1.225(-1\times10^-^4)

-1.225\times2.5434\times10^-^4\times0.20=6\times10^-^3\frac{ds}{dt} +1.225(-1\times10^-^4)

⇒-0.623133\times10^-^4+1.225\times10^-^4=6\times10^-^3\frac{ds}{dt}

           \frac{ds}{dt} = \frac{0.6018\times10^-^4}{6\times10^-^3} \\\\= 0.01003kg/m^3-s

ds/dt = 0.01003kg/m³-s

Thus, the time rate of change in air density during expiration is 0.01003kg/m³-s

3 0
3 years ago
Read 2 more answers
Other questions:
  • Define mechanical energy useing the example of the skateboarder on the half-pipe explain how kinetic and potential energy relate
    11·1 answer
  • A negative externality:
    6·1 answer
  • Katy works at a pet store, and is in charge of tracking the cat food supply for the morning, afternoon, and evening shifts. Ther
    8·2 answers
  • According to the U.S. Census Bureau, in 2016, about 12.7% of the American population lived in poverty. Research demonstrates tha
    15·1 answer
  • What is a creative name of a roller coaster about the solar system
    15·1 answer
  • You are in a train traveling on a horizontal track and notice that a piece of luggage starts to slide directly toward the front
    7·1 answer
  • Which agents of erosion and deposition generally sort sediments by grain size?
    14·1 answer
  • What can you say about the speed of light in diamond?
    15·1 answer
  • Why does the Sun appear so big, bright, and hot if it is<br> only an average sized star?
    11·2 answers
  • What is number 10 for this?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!