Answer:
Percent by mass of water is 56%
Explanation:
First of all calculate the mass of hydrated compound as,
Mass of Sodium = Na × 2 = 22.99 × 1 = 45.98 g
Mass of Sulfur = S × 1 = 32.06 × 1 = 32.06 g
Mass of Oxygen = O × 14 = 16 × 14 = 224 g
Mass of Hydrogen = H × 20 = 1.01 × 20 = 20.2 g
Mass of Na₂S0₄.10H₂O = 322.24 g
Secondly, calculate mass of water present in hydrated compound. For this one should look for the coefficient present before H₂O in molecular formula of hydrated compound. In this case the coefficient is 10, so the mass of water is...
Mass of water = 10 × 18.02
Mass of water = 180.2 g
Now, we will apply following formula to find percent of water in hydrated compound,
%H₂O = Mass of H₂O / Mass of Hydrated Compound × 100
Putting values,
%H₂O = 180.2 g / 322.24 g × 100
%H₂O = 55.92 % ≈ 56%
Answer:
518 mL
Explanation:
We can solve this using Boyle's Law Formula
P1V1 = P2V2
where p1 = initial pressure, p2 = final pressure, v1 = initial volume and v2 = final volume
here , the initial pressure is 1 atm and the initial volume is 725mL
we are given the final pressure 1.4 and we need to find the final volume
so we have p1v1 = p2v2
==> plug in p1 = 1 , v1 = 725 mL and p2 = 1.4
(1)(725) = (1.4)v2
==> multiply 1 and 725
725 = (1.4)(v2)
==> divide both sides by 1.4
v2 = 518
N2 would have a volume of 518mL at 1.4atm
Rubber.
Iron, copper, and graphite are minerals. Rubber is not a mineral.
Have an amazing day! :3
Solubility is the maximum amount of a substance that will dissolve in a given amount of solvent at a specific temperature. There are two direct factors that affect solubility: temperature and pressure. Temperature affects the solubility of both solids and gases, but pressure only affects the solubility of gases.