Answer:
(Most accurate) pippete>graduated cylinder>beaker>balance (Least accurate)
Explanation:
- <em>Most accurate. A pipette prived the most accurate method for delivering a known volume of solution, for example, a 10mL transfer pipette has an accuracy of ±0.02mL</em>
- A graduated cylinder is specifically used to deliver a known volume, its typical accuracy is ±1%, this means that a 100ml graduated cylinder is accurate to ±1mL.
- A beaker is a multipurpose cylindrical glass mainly used to hold liquids. Even though they are graduated, these marks are an estimation, the beaker's accuracy is around 10%.
- Least accurate. A balance measures an object's mass, even though water's density is close to 1, a balance is not the ideal equipment to measure volume, its capacity usually goes between 100-200grams and can measure mass to the nearest ±0.01mg to ±1mg.
I hope you find this information useful and interesting! Good luck!
Answer:
The simplified expression for the fraction is
Explanation:
From the given information:
O3* → O3 (1) fluorescence
O + O2 (2) decomposition
O3* + M → O3 + M (3) deactivation
The rate of fluorescence = rate of constant (k₁) × Concentration of reactant (cO)
The rate of decomposition is = k₂ × cO
The rate of deactivation = k₃ × cO × cM
where cM is the concentration of the inert molecule
The fraction (X) of ozone molecules undergoing deactivation in terms of the rate constants can be expressed by using the formula:
since cM is the concentration of the inert molecule
Answer:
1461.7 g of AgI
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
CaI₂ + 2AgNO₃ —> 2AgI + Ca(NO₃)₂
From the balanced equation above,
1 mole of CaI₂ reacted to produce 2 moles of AgI.
Next, we shall determine the number of mole AgI produced by the reaction of 3.11 moles of CaI₂. This can be obtained as follow:
From the balanced equation above,
1 mole of CaI₂ reacted to produce 2 moles of AgI.
Therefore, 3.11 moles of CaI₂ will react to produce = 3.11 × 2 = 6.22 moles of AgI
Finally, we shall determine the mass of 6.22 moles of AgI. This can be obtained as follow:
Mole of AgI = 6.22 moles
Molar mass of AgI = 108 + 127
= 235 g/mol
Mass of AgI =?
Mass = mole × molar mass
Mass of AgI = 6.22 × 235
Mass of AgI = 1461.7 g
Therefore, 1461.7 g of AgI were obtained from the reaction.