First one is 7.73 (23.19/3)
Second one is 14.04 ((19.71/7.3) x 5.2)
Answer:
![\frac{x^{2} }{4312 } + \frac{y^{2} }{8281 }](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E%7B2%7D%20%7D%7B4312%20%7D%20%2B%20%5Cfrac%7By%5E%7B2%7D%20%7D%7B8281%20%7D)
Step-by-step explanation:
Since the foci are at(0,±c) = (0,±63) and vertices (0,±a) = (0,±91), the major axis is the y- axis. So, we have the equation in the form (with center at the origin)
.
We find the co-vertices b from b = ±√(a² - c²) where a = 91 and c = 63
b = ±√(a² - c²)
= ±√(91² - 63²)
= ±√(8281 - 3969)
= ±√4312
= ±14√22
So the equation is
![\frac{x^{2} }{(14\sqrt{22}) ^{2} } + \frac{y^{2} }{91^{2} } = \frac{x^{2} }{4312 } + \frac{y^{2} }{8281 }](https://tex.z-dn.net/?f=%5Cfrac%7Bx%5E%7B2%7D%20%7D%7B%2814%5Csqrt%7B22%7D%29%20%5E%7B2%7D%20%7D%20%2B%20%5Cfrac%7By%5E%7B2%7D%20%7D%7B91%5E%7B2%7D%20%7D%20%3D%20%5Cfrac%7Bx%5E%7B2%7D%20%7D%7B4312%20%7D%20%2B%20%5Cfrac%7By%5E%7B2%7D%20%7D%7B8281%20%7D)
The value of x is 3.8
<em><u>Solution:</u></em>
<em><u>Given equation is:</u></em>
![x + 7.4 = 11.2](https://tex.z-dn.net/?f=x%20%2B%207.4%20%3D%2011.2)
We have to solve the equation for "x"
Move the terms so that you end up with only terms involving x on one side of the sign and all the numbers on the other
Therefore, we get
x + 7.4 = 11.2
When we move 7.4 from left side to right side of equation it becomes -7.4
x = 11.2 - 7.4
Subtract 7.4 from 11.2
x = 3.8
Thus value of x is 3.8