Answer:
B. neither Y nor Z
Explanation:
because there is no setup showing mixtures
Answer:
In general, organic acids are weak acids and do not dissociate completely in water, whereas the strong mineral acids do. Lower molecular mass organic acids such as formic and lactic acids are miscible in water, but higher molecular mass organic acids, such as benzoic acid, are insoluble in molecular (neutral) form.
will this help?
Answer:
A) increasing dispersion interactions
Explanation:
Polarizability allows gases containing atoms or nonpolar molecules (for example, to condense. In these gases, the most important kind of interaction produces <em>dispersion forces</em>, <em>attractive forces that arise as a result of temporary dipoles induced in atoms or molecules.</em>
<em>Dispersion forces</em>, which are also called <em>London forces</em>, usually <u>increase with molar mass because molecules with larger molar mass tend to have more electrons</u>, and <u>dispersion forces increase in strength with the number of electrons</u>. Furthermore, larger molar mass often means a bigger atom whose electron distribution is more easily disturbed because the outer electrons are less tightly held by the nuclei.
Because the noble gases are all nonpolar molecules, <u>the only attractive intermolecular forces present are the dispersion forces</u>.
Answer:
Explanation:
before the reaction you have N=2 and H=6 after the reaction you have N=2 and H=6 so yes it follows the law
Answer:
A
Explanation:
The octet rule refers to the tendency of atoms to prefer to have eight electrons in the valence shell. When atoms have fewer than eight electrons, they tend to react and form more stable compounds. When discussing the octet rule, we do not consider d or f electrons. Only the s and p electrons are involved in the octet rule, making it useful for the main group elements (elements not in the transition metal or inner-transition metal blocks); an octet in these atoms corresponds to an electron configurations ending with s2p6 .