C7H16, where C=12.01, and H=1.01, so the weight of the molecule would be 7(12.01)+16(1.01), or 100.23. The percentage of carbon would be found by ((7*12.01)/100.23)*100=83.88% Carbon
((16*1.01)/100.23)*100=16.12% Hydrogen
<span>The answer is 4. The molecules of each material entice each other over dispersion (London) intermolecular forces. Whether a substance is a solid, liquid, or gas hinge on the stability between the kinetic energies of the molecules and their intermolecular magnetisms. In fluorine, the electrons are firmly apprehended to the nuclei. The electrons have slight accidental to stroll to one side of the molecule, so the London dispersion powers are comparatively weak. As we go from fluorine to iodine, the electrons are far from the nuclei so the electron exhausts can more effortlessly misrepresent. The London dispersion forces developed to be increasingly stronger.</span>
This is more of a physics explanation, but here we go.
Mass is a measure of how much "matter" is in an object. Weight is the force applied onto an object by gravity. Weight itself can be related to mass like this:

where g is a gravitational constant. For our purposes, it's defined by whatever planet you are on. Following this, we can demonstrate that mass is NOT the same thing as weight if we take two objects of the same mass and put them on different planets.
Let E refer to Earth and F refer to Mars

Following this, we can see clearly that weight is not the same as mass:

If weight was the same thing as mass, the two values would be the same, as the mass of the two objects is the same. But since weight is defined in the context of gravity, they are not.
Answer:
Hydrogen and Chlorine
Explanation:
They are both an example in univalent atoms, because of their nature to form only one single bond.
I wasn't able to find another example, hope it helped! :)