A) LITHIUM is the least reactive alkali metal
B) FRANCIUM is the most reactive alkali metal
C) BERYLLIUM is the least reactive alkaline earth metal
D) RADIUM is the most reactive alkaline earth metal
E) TENNESSINE is the most reactive halogen
For E it might also be Astatine because Tennessine is a fairly new
Answer:
3500
Explanation:
well 1 liter is equal to 1000 cubic centimeters so multiply that by 3.5 and you get 3500
Answer:
atoms or electrons
Explanation:
but l guess electrons is the best answer
An oxide of nitrogen contains 30.45 mass % N, if the molar mass is 90± 5 g/mol the molecular formula is N₂O₄.
<h3>What is molar mass?</h3>
The molar mass of a chemical compound is determined by dividing its mass by the quantity of that compound, expressed as the number of moles in the sample, measured in moles. A substance's molar mass is one of its properties. The compound's molar mass is an average over numerous samples, which frequently have different masses because of isotopes.
<h3>How to find the molecular formula?</h3>
The whole-number multiple is defined as follows.
Whole-number multiple = 
The empirical formula mass is shown below.
Mw of empirical formula = Mw of N+ 2 x (Mw of O)
= 14.01 g/mol + 2 x (16.00 g/mol)
= 46.01 g/mol
With the given molar mass or the molecular formula mass, we can get the whole-number multiple for the compound.
Whole-number multiple =
≈ 2
Multiplying the subscripts of NO2 by 2, the molecular formula is N(1x2)O(2x2)= N2O4.
To learn more about molar mass visit:
brainly.com/question/12127540
#SPJ4
Answer:
In order to be able to solve this problem, you will need to know the value of water's specific heat, which is listed as
c=4.18Jg∘C
Now, let's assume that you don't know the equation that allows you to plug in your values and find how much heat would be needed to heat that much water by that many degrees Celsius.
Take a look at the specific heat of water. As you know, a substance's specific heat tells you how much heat is needed in order to increase the temperature of 1 g of that substance by 1∘C.
In water's case, you need to provide 4.18 J of heat per gram of water to increase its temperature by 1∘C.
What if you wanted to increase the temperature of 1 g of water by 2∘C ?
This will account for increasing the temperature of the first gram of the sample by n∘C, of the the second gramby n∘C, of the third gram by n∘C, and so on until you reach m grams of water.
And there you have it. The equation that describes all this will thus be
q=m⋅c⋅ΔT , where
q - heat absorbed
m - the mass of the sample
c - the specific heat of the substance
ΔT - the change in temperature, defined as final temperature minus initial temperature
In your case, you will have
q=100.0g⋅4.18Jg∘C⋅(50.0−25.0)∘C
q=10,450 J