To answer your question I will use dimensional analysis, which is used by cancelling out the units. I will also use the balanced equation provided as a conversion factor.
A) First start out with the 0.300 mol of C6H12O6...
0.300 mol C6H12O6 * (2 mol CO2 / 1 mol C6H12O6) = 0.600 mol CO2
*The significant figures (sig figs) at still three, the 2 is a conversion counting number and does not count*
B) First change 2.00 g of C2H5OH to moles of C2H5OH...
The molecular mass of C2H5OH is...
2(12.01 g/mol) + 5(1.008 g/mol) + 16.00 g/mol + 1.008 g/mol = 46.07 g/mol
This can be used as a conversion factor to change grams to moles.
2.00 g C2H5OH * (1 mol C2H5OH / 46.07 g C2H5OH) = 0.0434 mol C2H5OH
Second, you can change the moles of C2H5OH to moles of C6H12O6..
0.0434 mol C2H5OH * (1 mol C6H12O6 / 2 mol C6H12O6) = 0.0217 mol C6H12O6
Third, change moles of C6H12O6 to grams...
MM = 6(12.01 g/mol) + 12(1.008 g/mol) + 6(16.00 g/mol) = 180.16 g/mol
0.0217 mol C6H12O6 * (180.16 g C6H12O6 / 1 mol C6H12O6) = 3.91 g C6H12O6
C) Now I am going to put it all into one long dimensional analysis problem.
MM of CO2 = 44.01 g/mol
MM of C2H5OH = 46.07 g/mol
2.00 g C2H5OH * (1 mol C2H5OH / 46.07 g C2H5OH) * (2 mol CO2 / 2 mol C2H5OH) * (44.01 g CO2 / 1 mol CO2) = 1.91 g CO2
I hope this helped and I am sorry that I talked to much, I just didn't want to miss anything!
Answer:
True! A transverse wave does move a medium at an obtuse angle to the wave!!
The heat change is related to specific heat as
Heat change = mass of substance X specific heat X change in temperature
So if we are considering same amount of substance
and we are starting with the same temperature
the change in temperature will be inversely proportional to the specific heat
higher the specific heat lower the temperature change
Thus the change in temperature will be least for the substance with highest specific heat.
Answer: Hydrogen
A television uses plasmas
Answer:
0.2
Explanation:
Given parameters:
Mass of helium = 0.628g
Mass of neon = 11.491g
Mass of argon = 7.613g
Unknown:
Mole fraction of neon = ?
Solution:
The mole fraction of an element is the number of moles of that element to the total number of moles in the gas mixture.
We need to calculate the number of moles of each element first;
Number of moles = 
Molar mass of Helium = 4g/mol
Molar mass of Neon = 20g/mol
Molar mass of Argon = 40g/mol
Number of moles of He =
= 0.16moles
Number of moles of Ne =
= 0.58moles
Number of moles of Ar =
= 0.19moles
Total number of moles = 0.16moles + 0.58moles + 0.19moles = 0.93moles
Mole fraction Neon =
= 0.2