Answer:
The resultant force would (still) be zero.
Explanation:
Before the 600-N force is removed, the crate is not moving (relative to the surface.) Its velocity would be zero. Since its velocity isn't changing, its acceleration would also be zero.
In effect, the 600-N force to the left and 200-N force to the right combines and acts like a 400-N force to the left.
By Newton's Second Law, the resultant force on the crate would be zero. As a result, friction (the only other horizontal force on the crate) should balance that 400-N force. In this case, the friction should act in the opposite direction with a size of 400 N.
When the 600-N force is removed, there would only be two horizontal forces on the crate: the 200-N force to the right, and friction. The maximum friction possible must be at least 200 N such that the resultant force would still be zero. In this case, the static friction coefficient isn't known. As a result, it won't be possible to find the exact value of the maximum friction on the crate.
However, recall that before the 600-N force is removed, the friction on the crate is 400 N. The normal force on the crate (which is in the vertical direction) did not change. As a result, one can hence be assured that the maximum friction would be at least 400 N. That's sufficient for balancing the 200-N force to the right. Hence, the resultant force on the crate would still be zero, and the crate won't move.
If they become closer, it is increased, and if the objects become farther away is decreased.
When an object moves its length contracts in the direction of motion. The faster it moves the shorter it gets in the direction of motion.
The object in this question moves and then stops moving. So it's length first contracts and then expands to its original length when the motion stops.
The speed doesn't have to be anywhere near the speed of light. When the object moves its length contracts no matter how fast or slow it's moving.
<span>Extreme tides happen twice a month. They are caused by the earth, Sun, and Moon all being in a straight alignment. Although they are not extremely rare, extreme tides are not normal occurrences. The answer is D.</span>