We can substitute the given values into the equation for T, given the surrounding temperature T0 = 0, initial temperature T1 = 140, constant k = -0.0815, and time t = 15 minutes.
T = 0 + (140 - 0)e^(-0.0815*15) = 140e^(-1.2225) = 41.23°F
Answer:
Answers 2.( a) . (i)Total potential difference provided by the four cell = 4x 1.5 Volts = 6.0 Volts (ii)The component of X is a variable resistor .
Explanation:
hope it helps
<span>It is important to use the Système Internationale (SI) units to describe motion, and other scientific concepts, firstly because the units are the most widely used. Unit choice is largely arbitrary, however, because many scientific units are derived from the base SI units, for example, the Newton is kg m s-2. Thus, secondly, more complex units are based on the bedrock of the SI units.</span>
The Mercury's mass for the given acceleration due to gravity is 0.3152 x 10²⁴ kg.
The ratio of the calculated and accepted value of the Mercury's mass is 0.95.
<h3>What is mass?</h3>
Mass is the amount of matter present in the object.
The mass of the object is always constant, anywhere it is on the Earth or Moon or any other planet.
Given is the acceleration due to gravity of Mercury planet at North pole is g = 3.698 m/s² and the radius of Mercury planet is 2440 km.
The acceleration due to gravity is related with mass as
g = GM/R²
Substitute the values, we have
3.698 = 6.67 x 10⁻¹¹ x M/(2440 x1000)³
M = 2.2016 x 10¹³ / 6.67 x 10⁻¹¹
M = 0.3152 x 10²⁴ kg
Thus, the mercury's mass is 0.3152 x 10²⁴ kg.
(b) Accepted value of Mercury's mass is 3.301 x 10²³ kg
Ratio of the value of mass calculated and accepted is
Mcalc/M accep = 0.3152 x 10²⁴ kg / 3.301 x 10²³ kg
= 0.95
Thus, the ratio is 0.95
Learn more about mass.
brainly.com/question/19694949
#SPJ1
Answer:
(a) 1.85 m/s
(b) 4.1 m/s
Explanation:
Data
- initial bullet velocity, Vbi = 837 m/s
- wooden block mass, Mw = 820 g
- initial wooden block velocity, Vwi = 0 m/s
- final bullet velocity, Vbf = 467 m/s
(a) From the conservation of momentum:
Mb*Vbi + Mw*Vwi = Mb*Vbf + Mw*Vwf
Mb*(Vbi - Vbf)/Mw = Vwf
4.1*(837 - 467)/820 = Vwf
Vwf = 1.85 m/s
(b) The speed of the center of mass speed is calculated as follows:
V = Mb/(Mb + Mw) * Vbi
V = 4.1/(4.1 + 820) * 837
V = 4.1 m/s