<h2>2) Copernicus rediscovered Aristarchus’s heliocentric model.</h2>
Before Copernican Revolution, people did believe in the ptolemain model that establishes the description of the Universe with the earth at the center having sun, moon, starts and planets all orbited earth. On the other hand, the heliocentric model establishes the sun at the center of the solar system and this starts with the publication of Nicolas Copernicus named <em>De revolutionibus orbium coelestium.</em>
<h2>5) Newton’s theories of gravity increased understanding of the movement of planets.</h2>
The revolution ended with Isaac Newton's work over a century later. As you well know, Newton was both a physicist and mathematician, better known for his prodigal work called <em>Philosophiæ Naturalis Principia Mathematica. </em>In this revolution, he is known for his laws of motion and universal gravitation increasing understanding of the movement of planets.
Answer:

Explanation:
Since fluid is pumping in and out at the same rate (5L/min), the total fluid volume in the tank stays constant at 350L. Only the amount of salt and its concentration changed overtime.
Let A(t) be the amount of salt (g) at time t and C(t) (g/L) be the concentration at time t
A(0) = 10 g
Brine with concentration of 1g/L is pouring in at the rate of 5L/min so the salt income rate is 5 g/min
The well-mixed solution is pouring out at the rate of 5L/min at concentration C(t) so the salt outcome rate is 5C g/min
But the concentration is total amount of salt over 350L constant volume
C = A / 350
Therefore our rate of change for salt A' is
A' = 5 - 5A/350 = 5 - A/70
This is a first-order linear ordinary differential equation and it has the form of y' = a + by. The solution of this is

So 
with A(0) = 10
c + 350 = 10
c = 10 - 350 = -340
