1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
enyata [817]
3 years ago
14

A spark ignition engine burns a fuel of calorific value 45MJkg. It compresses the air-ful mixture in accordance with PV^1.3=cons

tant. The pressure developed in the cylinder during 30% and 70% of the compression stroke is 1.5 bar and 2.75 bar, respectively. The relative efficiency of the engine with respect to the air standard efficiency is 50%. Determine the (i) compression ratio (ii) fuel consumption per hour per kW of power generated
Engineering
1 answer:
antoniya [11.8K]3 years ago
5 0

Answer:

i). Compression ratio = 3.678

ii). fuel consumption = 0.4947 kg/hr

Explanation:

Given  :

PV^{1.3}=C

Fuel calorific value = 45 MJ/kg

We know, engine efficiency is given by,

\eta = 1-\left ( \frac{1}{r_{c}} \right )^{1.3-1}

where r_{c} is compression ratio = \frac{v_{c}+v_{s}}{v_{c}}

           r_{c} = 1+\frac{v_{s}}{v_{c}}

where v_{c} is compression volume

           v_{s} is swept volume

Now it is given that swept volume at 30% of compression, 70% of the swept volume remains.

Then, v_{30}=v_{c}+0.7v_{s}

and at 70% compression, 30% of the swept volume remains

    ∴    v_{70}=v_{c}+0.3v_{s}  

We know,

\frac{P_{2}}{P_{1}}=\left ( \frac{V_{1}}{V_{2}} \right )^{n}

\frac{2.75}{1.5}=\left ( \frac{v_{c}+0.7\times v_{s}}{v_{c}+0.3\times v_{s}} \right )^{1.3}

\left ( 1.833 \right )^{\frac{1}{1.3}}=\frac{v_{c}+0.7v_{s}}{v_{c}+0.3v_{s}}\\

1.594=\frac{v_{c}+0.7v_{s}}{v_{c}+0.3v_{s}}

v_{c}+0.7v_{s}=1.594v_{c}+0.4782v_{s}

0.7v_{s}-0.4782v_{s}=1.594v_{c}-v_{c}

0.2218v_{s} = 0.594v_{c}

v_{c}=0.3734 v_{s}

∴   r_{c}= 1+\frac{v_{s}}{0.3734v_{s}}

Therefore, compression ratio is r_{c} = 3.678

Now efficiency, \eta =\left ( 1-\frac{1}{r_{c}} \right )^{0.3}

 \eta =\left ( 1-\frac{1}{3.678} \right )^{0.3}

 \eta =0.32342 , this is the ideal efficiency

Therefore actual efficiency, \eta_{act} =0.5\times \eta _{ideal}

           \eta_{act} =0.5\times 0.32342

           \eta_{act} =0.1617

Therefore total power required = 1 kW x 3600 J

                                                    = 3600 kJ

∴ we know efficiency, \eta=\frac{W_{net}}{Q_{supply}}

Q_{supply}=\frac{W_{net}}{\eta _{act}}

Q_{supply}=\frac{3600}{0.1617}

Q_{supply}=22261.78 kJ

Therefore fuel required = \frac{22261.78}{45000}

                                        = 0.4947 kg/hr      

You might be interested in
A 20.0 µF capacitor is charged to a potential difference of 800 V. The terminals of the charged capacitor are then connected to
Sergeu [11.5K]

Answer:

a) Q_initial = 16 * 10^-3 C

b) V_1 = V_2 =  (16/3) * 10^2 V

c)  E = 64/15 J

d)  dE = 32/15 J of decrease

Explanation:

Given:

- Capacitor 1, C_1 = 20.0 uF

- Capacitor 2, C_2 = 10.0 uF

- Charged with P.d V = 800 V

Find:

a) the original charge of the system,

(b) the final potential difference across each capacitor

(c) the final energy of the system

(d) the decrease in energy when the capacitors are connected.

Solution:

a)

- The initial charge in the circuit is the one carried by the first charged capacitor.

                           Q_initial = C_1*V

                           Q_initial = 20*10^-6 * 800

                           Q_initial = 16 * 10^-3 C

b)

- After charging the other capacitor, we know that the total charge is conserved among two capacitor:

                          Q_initial = Q_1 + Q_2

- We also know that potential difference across two capacitor is also same.

                          V_1 = V_2 = Q_1 / C_1 = Q_2 / C_2

- Using the two equations and solve for charge Q_2:

                          Q_2 = Q_1*C_2/C_1

                          Q_2 = Q_1*10/20 = 0.5*Q_1

- using conservation of charge:

                          Q_initial = 1.5*Q_1

                          Q_1 = 16*10^-3 / 1.5 = 10.67*10^-3 C

- Hence the Voltage across each capacitor is:

                          V_2 = V_1 = Q_1 / C_1  

                                            = 10.67*10^-3 / 20*10^-6

                                            = (16/3) * 10^2 V

c)

- The energy in the system is:

                          E = 0.5*C_eq*V^2

Where, C_eq is the equivalent capacitance of paralle circuit.

                           E = 0.5*(20+10)*10^-6 *((16/3) * 10^2)^2

                          E = 64/15 J

d)

- The decrease in energy of the capacitors is:

                           dE = E_initial - E_final

Where, E_initial is due to charging of the C_1 only:

                          dE = 0.5*10^-6*20*800^2 - (64/15)

                          dE = 32/5 - 64/15 = 32/15 J

5 0
3 years ago
Close to 16 billion pounds of ethylene glycol (EG) were produced in 2013. It previously ranked as the twenty-sixth most produced
bekas [8.4K]

Answer:

a) 0.684

b) 0.90

Explanation:

Catalyst

EO + W → EG

<u>a) calculate the conversion exiting the first reactor </u>

CAo = 16.1 / 2   mol/dm^3

Given that there are two stream one  contains 16.1 mol/dm^3 while the other contains   0.9 wt% catalyst

Vo = 7.24 dm^3/s

Vm = 800 gal = 3028 dm^3

hence Im = Vin/ Vo = (3028 dm^3) / (7.24dm^3/s) = 418.232 secs = 6.97 mins

next determine the value of conversion exiting the reactor ( Xai ) using the relation below

KIm = \frac{Xai}{1-Xai}  ------ ( 1 )

make Xai subject of the relation

Xai = KIm / 1 + KIm  ---  ( 2 )

<em>where : K = 0.311 ,  Im = 6.97   ( input values into equation 2 )</em>

Xai = 0.684

<u>B) calculate the conversion exiting the second reactor</u>

CA1 = CA0 ( 1 - Xai )

therefore CA1 = 2.5438 mol/dm^3

Vo = 7.24 dm^3/s

To determine the value of the conversion exiting the second reactor  ( Xa2 ) we will use the relation below

XA2 = ( Xai + Im K ) / ( Im K + 1 ) ----- ( 3 )

<em> where : Xai = 0.684 , Im = 6.97,  and K = 0.311  ( input values into equation 3 )</em>

XA2 = 0.90

<u />

<u />

<u />

4 0
3 years ago
Why does the compression-refrigeration cycle have a high-pressure side and a low-pressure side?
Cloud [144]

Answer: D

Explanation:

8 0
2 years ago
Since you became discouraged not being able to find a job in the San Diego area, you enlarged the area in which you looked for a
nordsb [41]

Answer:

need points 48986

Explanation:

5 0
3 years ago
compressors, the gas is often cooled while being compressed to reduce the power consumed by the compressor. explain how cooling
ASHA 777 [7]

The amount of work done by steady flow devices varies with the particular gas volume. The kinetic energy of gas particles decreases during cooling.

When the gas is subjected to intermediate cooling during compression, the gas specific volume is reduced, which lowers the compressor's power consumption. Compression is less adiabatic and more isothermal because the compressed gas must be cooled between stages since compression produces heat. The system's thermodynamic cycle's cold sink temperature is lowered by cooling the compressor coils. By increasing the temperature difference between the heat source and the cold sink, this improves efficiency.

Learn more about thermodynamics here-

brainly.com/question/1368306

#SPJ4

8 0
1 year ago
Other questions:
  • Define a public static method named s2f that takes two String arguments, the name of a file and some text. The method creates th
    5·1 answer
  • Compute the number of kilo- grams of hydrogen that pass per hour through a 6-mm-thick sheet of palladium having an area of 0.25
    12·1 answer
  • Two loads connected in parallel draw a total of 2.4 kW at 0.8 pf lagging from a 120-V rms, 60-Hz line. One load absorbs 1.5 kW a
    5·1 answer
  • What should -7/56 BE DIVIDE TO GET -1/8​
    14·2 answers
  • The number of pulses per second from IGBTs is referred to as
    10·1 answer
  • Problematic substances mechanical engeneering???
    6·1 answer
  • What additive keeps engines clean by preventing contaminants and deposits from collecting on surfaces?
    10·2 answers
  • Hello how are you all bye everyone have a great day ahead​
    8·2 answers
  • 10) A pressure sensor consisting of a diaphragm with strain gauges bonded to its surface has the following information in its sp
    12·1 answer
  • What is the minimum clamp time for gluing a panel?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!