One mole of a substance is defined by Avogadro as consisting of 6.022 x 1023 atoms. This is Avogadro's number. To calculate the number of atoms in two moles of sodium, use dimensional analysis. 2.0 moles Na x 6.022⋅1023g1mol=1.20⋅1024 atoms of Na
Answer:
34 g/100 mL
Explanation:
The solubility of a compound can be expressed in g/100mL, for this we must divide the mass of the compound that dissolves in the solute by the volume of the solvent.
The solvent, in this case, is water, and that mass of the solute X that dissolved is the mass that was recovered after the solvent was drained and evaporated. So the solubility of X (S) is:
S = 0.17 kg/5L
S = 170g/5000mL
S = 170g/(5*1000)mL
S = 34 g/100 mL
Answer:

Explanation:
Glucose reacts with oxygen do produce carbon dioxide and water:

Given a daily mass of glucose:

Find moles of glucose:

From stoichiometry of this equation, moles of carbon dioxide can be found by multiplying this amount by 6:

Convert this into mass using the molar mass of carbon dioxide:

This is the mass of carbon dioxide per person per day. Multiply by the population and by the number of days to get the total mass:

Answer:
λ = 0.45×10⁻⁶ m
Explanation:
Given data:
Wavelength of blue light = ?
Frequency of blue light = 6.69×10¹⁴ s⁻¹
Solution:
Formula;
Speed of wave = wavelength × frequency
Speed of wave = 3.00×10⁸ m/s
by putting vales,
3.00×10⁸ m/s = λ × 6.69×10¹⁴ s⁻¹
λ = 3.00×10⁸ m/s / 6.69×10¹⁴ s⁻¹
λ = 0.45×10⁻⁶ m