2NH₂ + O₂ → N₂ + 2H₂O
<u>Explanation:</u>
Balancing the equation means, the number of atoms on both sides of the equation must be the same.
In the case of the given equation, we have to find out whether it is balanced or not.
2NH₂ + O₂ → N₂ + 2H₂O
Atoms Number of atoms before balancing after balancing
LHS RHS LHS RHS
N 1 2 2 2
H 2 2 4 4
O 2 1 2 2
To balance the N atoms, we have to put 2 in front of NH₂, and then to balance the H, O atoms, we have to put 2 in front of H₂O, so that each atom in left hand as well as right hand side of the equation was balanced.
Answer:
your simpal answer is 177.32
<span>E=hν</span> where E is the energy of a single photon, and ν is the frequency of a single photon. We recall that a photon traveling at the speed of light c and a frequency ν will have a wavelength λ given by <span>λ=<span>cν</span></span>λ will have an energy given by <span>E=<span><span>hc</span>λ</span></span><span>λ=657</span> nm. This will be <span>E=<span><span>(6.626×<span>10<span>−34</span></span>)(2.998×<span>108</span>)</span><span>(657×<span>10<span>−9</span></span>)</span></span>=3.0235×<span>10<span>−19</span></span>J</span>
So we now know the energy of one photon of wavelength 657 nm. To find out how many photons are in a laser pulse of 0.363 Joules, we simply divide the pulse energy by the photon energy or <span>N=<span><span>E<span>pulse </span></span><span>E<span>photon</span></span></span>=<span>0.363<span>3.0235×<span>10<span>−19</span></span></span></span>=1.2×<span>1018</span></span>So there would be <span>1.2×<span>1018</span></span><span> photons of wavelength 657 nm in a pulse of laser light of energy 0.363 Joules.</span>
Answer:
345.89 g/mol
Explanation:
To find the molar mass, find the atomic mass of all the elements from a periodic table.
Cs - 132.91 × 2 = 265.82
S - 32.07
O - 16.00 × 3 = 48.00
Now add them all together.
265.82 + 32.07 + 48.00 = 345.89 g/mol
Hope that helps.