The question is incomplete, here is the complete question:
A chemist measures the amount of bromine liquid produced during an experiment. She finds that 766.g of bromine liquid is produced. Calculate the number of moles of bromine liquid produced. Round your answer to 3 significant digits.
<u>Answer:</u> The amount of liquid bromine produced is 4.79 moles.
<u>Explanation:</u>
To calculate the number of moles, we use the equation:

We are given:
Given mass of liquid bromine = 766. g
Molar mass of liquid bromine,
= 159.8 g/mol
Putting values in above equation, we get:

Hence, the amount of liquid bromine produced is 4.79 moles.
Answer:
H2 > N2 > Ar > CO2
Explanation:
Graham's law explains why some gases efuse faster than others. This is due to the difference i their molar mass. Generally; The rate of effusion of gaseous substances is inversely proportional to the square rot of its molar mass.
This means gases with low molar masses would have higher efusion rate compared to gases with higher molar masses.
So now we just need to compare the molar masses of the various gases;
Ar - 39.95
CO2 - 44.01
H2 - 2
N2 - 28.01
To obtain the order in increasing rate, we have to order the gases in decreasing molar mass. This order of increasing rate is given as;
H2 > N2 > Ar > CO2
Glyphosphate, lindane, 2,4-d, chlordane are organic compound that have chlorine in common.
<h3>What is Organic compound?</h3>
Organic compound are group of chemical substance that have carbon and hydrogen atoms in which the bonds are covalently linked together.
Therefore, Glyphosphate, lindane, 2,4-d, chlordane are organic compound that have chlorine in common and these chemicals are use as herbicides that is kill weeds, or to kill insects or pests because of chlorine present in it.
Learn more about organic compounds here.
brainly.com/question/14102593
Answer : The number of iron atoms present in each red blood cell are, 
Explanation :
First we have to calculate the moles of iron.

Now we have to calculate the number of iron atoms.
As, 1 mole of iron contains
number of iron atoms
So, 0.0519 mole of iron contains
number of iron atoms
Now we have to calculate the number of iron atoms are present in each red blood cell.
Number of iron atoms are present in each red blood cell = 
Number of iron atoms are present in each red blood cell = 
Number of iron atoms are present in each red blood cell = 
Therefore, the number of iron atoms present in each red blood cell are, 