Answer:
0.16joules
Explanation:
Using the relation for The gravitational potential energy
E= Mgh
Where,
E= Potential energy
h = Vertical Height
M = mass
g = Gravitational Field Strength
To find the vertical component of angle of launch Where the angle is 22°
h= sin theta
So E = mghsintheta
= 0.18 x 0.98 x 0.253 sin22
=0.16joules
Explanation:
Answer:
The lethal voltage for the electrician under those conditions is 126.5 V.
Explanation:
To discover what is the lethal voltage to the electrician we need to find out what is the voltage that produces 55 mA = 0.055 A when across a resistance of 2300 Ohms (Electrician's body resistancy). For that we'll use Ohm's Law wich is expressed by the following equation:
V = i*R
Where V is the voltage we want to find out, i is the current wich is lethal to the electrician and R is his body resistance. By applying the given values we have:
V = 0.055*2300 = 126.5 V.
The lethal voltage for the electrician under those conditions is 126.5 V.
If the compressor removes 500 j if the 700 the 200 j left would have Ben conducted through the refrigerator/200 j released into the room
The answer to your question is A.
45N and 91W
Answer:
r = 0.22m
Explanation:
To find the radius of the circular trajectory, you first take into account that the centripetal force of the charged particle, is equal to the electric force between the particle that is moving and the particle at the center of the orbit.
Then, you have:
(1)
m: mass of the particle = 20g = 20*10-3 kg
ac: centripetal acceleration = ?
q: charge of the particle = 5*10^-6C
Fe: electric force between the charges
The electric force is given by:
(2)
r: radius of the orbit
q': charge of the particle at the center of the orbit = -5*10^-6C
Furthermore, the centripetal acceleration is:
(3)
v: speed of the particle = 7m/s
You replace the expressions (2) and (3) in the equation (1) and solve for r:
Finally, you replace the values of all parameters in the previous expression:
The radius of the circular trajectory is 0.22m