The choices are:
a. bringing it to a mechanic for a tune-up
b. checking to make sure it is in working order
c. making sure you are entering your vehicle
d. giving the tires a good kick to check traction
Answer:
The answer is: letter b, checking to make sure it is in working order.
Explanation:
A "vehicle check" is essential for everyone involved. It makes the driver and the passengers safe, and also extends that safety to the people in the environment. Before driving, you need to check your car for the following: <em>fluids, wipers, spare wheels, leaks and the like</em>. This will ensure that your vehicle is in proper working order and <u>will lessen the possibility of car accident in the future.</u>
Thus, this explains the answer, letter b.
Answer:
Yes the water will be safe at the point of cooling water discharge
Explanation:
Power losses in plant= 350- 350×0.35=227.5MW
Rate of heat rejection to stream= 0.75× 227.5= 170.625MW
Rate of heat rejection= rate of flow of water× c × ΔT
170625000= 150000000× 4.186 × (Final temperature- 20)
Final temperature= 20.3 ◦C
The final temperature of stream will be 20.3 ◦C. Thechange is very small so the minnows will be able to handle this temperature.
Answer:
The value of v2 in each case is:
A) V2=3v for only Vs1
B) V2=2v for only Vs2
C) V2=5v for both Vs1 and Vs2
Explanation:
In the attached graphic we draw the currents in the circuit. If we consider only one of the batteries, we can consider the other shorted.
Also, what the problem asks is the value V2 in each case, where:

If we use superposition, we passivate a battery and consider the circuit affected only by the other battery.
In the first case we can use an equivalent resistance between R2 and R3:

And


In the second case we can use an equivalent resistance between R2 and (R1+R4):

And


If we consider both batteries:

Answer:
a) P ≥ 22.164 Kips
b) Q = 5.4 Kips
Explanation:
GIven
W = 18 Kips
μ₁ = 0.30
μ₂ = 0.60
a) P = ?
We get F₁ and F₂ as follows:
F₁ = μ₁*W = 0.30*18 Kips = 5.4 Kips
F₂ = μ₂*Nef = 0.6*Nef
Then, we apply
∑Fy = 0 (+↑)
Nef*Cos 12º - F₂*Sin 12º = W
⇒ Nef*Cos 12º - (0.6*Nef)*Sin 12º = 18
⇒ Nef = 21.09 Kips
Wedge moves if
P ≥ F₁ + F₂*Cos 12º + Nef*Sin 12º
⇒ P ≥ 5.4 Kips + 0.6*21.09 Kips*Cos 12º + 21.09 Kips*Sin 12º
⇒ P ≥ 22.164 Kips
b) For the static equilibrium of base plate
Q = F₁ = 5.4 Kips
We can see the pic shown in order to understand the question.