Answer:

Explanation:
g = Acceleration due to gravity at sea level = 
R = Radius of Earth = 6371000 m
h = Altitude of observatory = 4205 m
Change in acceleration due to gravity due to change in altitude is given by

Weight at sea level

Weight at the given height

Change in weight 
Her weight reduces by
.
Answer:
Explanation:
a. Cast iron or Aluminium alloy are typically used. Aluminium is much lighter in weight and it can transfer heat better to the coolant. While Cast Iron is typically stronger and is thus still used by the manufacturers.
b. Copper can be used as a condensing heat exchanger for hot steam due to its optimal thermal properties and its ability to resist corrosion.
c. high-speed steel are perfect for producing drill bits because of its hardness and resistance to heat to an extent. Drill bits tend to produce heat as a result of the friction between it and the material to be drilled.
d. lead can be used as a container for strong acids because of its anti-corrosive properties
e.zinc and copper can be used as fuel in pyrotechnics mainly due to the fact that burn with refreshing colours. Aluminium can also be used.
f. Platinum is the metal that best suits this purpose because of its high melting point and resistivity to oxidation.
Answer: a)True
Explanation: Takt time is defined as the average time difference between the production of the two consecutive unit of goods by the manufacturer and this rate is matched with the demand of the customer. This is the time which is calculated to find the acceptable time for which the goods unit must be produced by the factory to meet the needs of the customer. Therefore , the statement is true that takt time is the rate at which a factory must produce to satisfy the customer's demand.
Answer:
The condition does not hold for a compression test
Explanation:
For a compression test the engineering stress - strain curve is higher than the actual stress-strain curve and this is because the force needed in compression is higher than the force needed during Tension. The higher the force in compression leads to increase in the area therefore for the same scale of stress the there is more stress on the Engineering curve making it higher than the actual curve.
<em>Hence the condition of : on the same scale for stress, the tensile true stress-true strain curve is higher than the engineering stress-engineering strain curve.</em><em> </em>does not hold for compression test