Answer - La cristalización ye un procesu químicu pol cual a partir d'un gas, un líquidu o una disolución, los iones, átomos o molécules establecen enllaces hasta formar una rede cristalina, la unidá básica d'un cristal. La cristalización emplegar con bastante frecuencia en química para purificar una sustancia sólida.
Complete Question
For some metal alloy, a true stress of 345 MPa (50040 psi) produces a plastic true strain of 0.02. How much will a specimen of this material elongate when a true stress of 411 MPa (59610 psi) is applied if the original length is 470 mm (18.50 in.)?Assume a value of 0.22 for the strain-hardening exponent, n.
Answer:
The elongation is 
Explanation:
In order to gain a good understanding of this solution let define some terms
True Stress
A true stress can be defined as the quotient obtained when instantaneous applied load is divided by instantaneous cross-sectional area of a material it can be denoted as
.
True Strain
A true strain can be defined as the value obtained when the natural logarithm quotient of instantaneous gauge length divided by original gauge length of a material is being bend out of shape by a uni-axial force. it can be denoted as
.
The mathematical relation between stress to strain on the plastic region of deformation is

Where K is a constant
n is known as the strain hardening exponent
This constant K can be obtained as follows

No substituting
from the question we have


Making
the subject from the equation above




From the definition we mentioned instantaneous length and this can be obtained mathematically as follows

Where
is the instantaneous length
is the original length



We can also obtain the elongated length mathematically as follows



Answer:
The specific heat capacity of substance A is 1.16 J/g
Explanation:
The substances A and B come to a thermal equilibrium, therefore, the heat given by the hotter substance B is absorbed by the colder substance A.
The equation becomes:
Heat release by Substance B = Heat Gained by Substance A
The heat can be calculated by the formula:
Heat = mCΔT
where,
m = mass of substance
C = specific heat capacity of substance
ΔT = difference in temperature of substance
Therefore, the equation becomes:
(mCΔT) of A = (mCΔT) of B
<u>FOR SUBSTANCE A:</u>
m = 6.01 g
ΔT = Final Temperature - Initial Temperature
ΔT = 46.1°C - 20°C = 26.1°C
C = ?
<u>FOR SUBSTANCE B:</u>
m = 25.6 g
ΔT = Initial Temperature - Final Temperature
ΔT = 52.2°C - 46.1°C = 6.1°C
C = 1.17 J/g
Therefore, eqn becomes:
(6.01 g)(C)(26.1°C) = (25.6 g)(1.17 J/g)(6.1°C)
C = (182.7072 J °C)/(156.861 g °C)
<u>C = 1.16 J/g</u>
Answer:
The correct answer is
option C. current to pneumatic (V/P)
Explanation:
A current to pneumatic controller is basically used to receive an electronic signal from a controller and converts it further into a standard pneumatic output signal which is further used to operate a positioner or control valve. These devices are reliable, robust and accurate.
Though Voltage and current to pressure transducers are collectively called as electro pneumatic tranducers and the only electronic feature to control output pressure in them is the coil.