Answer:Butane > ethane > methane, because between bigger molecules there are stronger van der Waals forces and also higher molar mass means they need to be given more energy to have enough kinetic energy to move quickly, freely in gas.
There are multiple butene isomers (Butene) and some (2-Butenes - cis and trans) actually have higher boiling point than n-Butane (there is also Isobutane, of course, with quite much lower boiling point than all of them) and some (1-Butene, Isobutylene) have lower, so this isn't really a fair or simple question. But on simplest level, it can again be said that 1-butene has lower boiling point because it has very similar shape but slightly lower molar mass (2H less) than n-butane.
Explanation:
Explanation:
Atomic number of magnesium is 12 and its electronic distribution is 2, 8, 2. On the other hand, atomic number of iodine is 53 and its electronic configuration is
.
Hence, there are 7 valence electrons in an iodine atom and there are 2 valence electrons in a magnesium atom.
So, one atom of iodine requires one electron from a donor atom to complete its octet. But one magnesium atom contains two valence electrons.
Therefore, one magnesium atom will combine with two iodine atoms to result in the formation of magnesium iodide as follows.

Therefore, an ionic bond will be formed when magnesium reacts with iodine to make magnesium iodide.
Answer:
you can simply answer vl\t1=v2/t2
Lo afect porque cuando la temperature aumenta, el volumen aumentará, luego, cuando we mantiene la presión, es constante. Calentar el gas aumenta la emergía cinética we law partículas, lo que have que el gas se expanda.
Espero que esto ayude :)
Answer:
The health effects of ozone layer depletion is discussed below
Explanation:
. Ozone layer depletion effects improved UV radiation levels at the
Earth's covering, which is degrading to human well-being.
Negative consequences involve improvements in several varieties of
skin cancers, eye cataracts, and immune insufficiency diseases.
• Ozone layer exhaustion improves the quantity of UVB that touches the
Earth's exterior.