Answer:
hope this helps!
Explanation:
Volume of the air bubble, V1=1.0cm3=1.0×10−6m3
Bubble rises to height, d=40m
Temperature at a depth of 40 m, T1=12oC=285K
Temperature at the surface of the lake, T2=35oC=308K
The pressure on the surface of the lake: P2=1atm=1×1.103×105Pa
The pressure at the depth of 40 m: P1=1atm+dρg
Where,
ρ is the density of water =103kg/m3
g is the acceleration due to gravity =9.8m/s2
∴P1=1.103×105+40×103×9.8=493300Pa
We have T1P1V1=T2P2V2
Where, V2 is the volume of the air bubble when it reaches the surface.
V2=
Each side has to have at least 44 horses
F61160 N. This is further explained below.
<h3>What is the force?</h3>
Generally, We are only interested in the component that operates horizontally since the vertical components all cancel each other out. The pressure difference works on the hemisphere to generate a normal force all over the surface, but we are only concerned with that force's horizontal component. This may be determined by supposing the hemispheres to be two flat circular plates of the same radius as the hemispheres that have been forced together.
Therefore, force is equal to pressure multiplied by area, which is
F= (970 -15 )( * (0.45 m)2)
F=60754 N for each side.
Therefore, each side has to have at least 44 horses
44* 1390 = 61160 N
Read more about force
brainly.com/question/13191643
#SPJ1
Explanation:
To find the average of these numbers, we just have to add the three numbers together and divide by 3.
- 2.07 + 0. 74 + 1.33 = 4.14. 4.14 / 3 = 1.38
- 1.09 + 1.40 + 0.31 = 2.8. 2.8 / 3 ≈ 9.3333333/ 9 1/3
- 0.95 + 1.61 + 0.56 = 3.12 / 3 = 1.04
- 0.81 + 1.89 + 1.08 = 3.78 / 3 = 1.26
Explanation:
It is given that,
Voltage of the battery, V = 12 V
Current, I = 100 ampere-hours
Energy stored is given by the product of power and time taken. So,
P is the power,
P = 1200 watts
This power can be used for 1 hour or 3600 seconds
Energy,
E = 4320000 J
So, the energy stored in this battery is 4320000 J. Hence, this is the required solution.