Answer:
the final kinetic energy is 0.9eV
Explanation:
To find the kinetic energy of the electron just after the collision with hydrogen atoms you take into account that the energy of the electron in the hydrogen atoms are given by the expression:

you can assume that the shot electron excites the electron of the hydrogen atom to the first excited state, that is
![E_{n_2-n_1}=-13.6eV[\frac{1}{n_2^2}-\frac{1}{n_1^2}]\\\\E_{2-1}=-13.6eV[\frac{1}{2^2}-\frac{1}{1}]=-10.2eV](https://tex.z-dn.net/?f=E_%7Bn_2-n_1%7D%3D-13.6eV%5B%5Cfrac%7B1%7D%7Bn_2%5E2%7D-%5Cfrac%7B1%7D%7Bn_1%5E2%7D%5D%5C%5C%5C%5CE_%7B2-1%7D%3D-13.6eV%5B%5Cfrac%7B1%7D%7B2%5E2%7D-%5Cfrac%7B1%7D%7B1%7D%5D%3D-10.2eV)
-10.2eV is the energy that the shot electron losses in the excitation of the electron of the hydrogen atom. Hence, the final kinetic energy of the shot electron after it has given -10.2eV of its energy is:

The bag moves to the left.
This is because of Newton's third law of motion that states:
For every action force on a body, there is an opposite and equal reaction force.
Thus pushing the bag from the right makes it move to the left.
Answer:
Explanation:
Force needed to apply start the box is greater than the force needed to keep it moving because static friction is greater than the kinetic friction .
A threshold force is needed to move the box and when box started to move kinetic friction comes into play.
Friction force is directly related to the weight of the box as the friction force is
coefficient of friction time Normal reaction .
And Normal reaction is equal to the weight of box if no force is applied.


Yes what do you need help on
Explanation:
Spaceship A moves at 0.800 in the positive – direction, while spaceship B moves in the opposite direction at 0.750 (both speeds are measured relative to Earth). What is the velocity {A,B} of spaceship A relative to spaceship B