Answer:
When broadcasting live on social, keep in mind that the best broadcasts are ones that feel like a conversation between brand and viewer. Unlike other forms of social video, you’ll get more views and engagement if your video
is longer and repeats key points.
Explanation:
When broadcasting live on social media, one should be live for long because in this way one can get more views as audience will increase with time. There should be an interaction with the audience like answering their questions which they write in the comments section. These comments and views will make this video to the top of news feed. Secondly the most important thing is the content of the video. One must focus on the information or knowledge he/she wants to convey and must repeat the key points again and again so that one who has missed the important points will be able catch them later.
The average speed would be 33.29m/s.The average speed equation is:

First you will need to solve for the distance you traveled in each scenario. So we can solve this by getting the product of speed and the time traveled.
Scenario 1:
Speed = 29m/s
Time = 120s
Distance = ?
Distance = (29m/s)(120s)
= 3,480m
Scenario 2
Speed = 35m/s
Time = 300s
Distance = ?
Distance = (35m/s)(300s)
= 10,500m
Now that you have the distance of both, you can solve for your average speed.
Answer:
muddy water is a heterogeneous mixture, which is Suspension.
Answer:
Heat can travel from one place to another in three ways: Conduction, Convection and Radiation. ... Thermal energy is transferred from hot places to cold places by convection. Convection occurs when warmer areas of a liquid or gas rise to cooler areas in the liquid or gas.
Answer:
Minimum work = 5060 J
Explanation:
Given:
Mass of the bucket (m) = 20.0 kg
Initial speed of the bucket (u) = 0 m/s
Final speed of the bucket (v) = 4.0 m/s
Displacement of the bucket (h) = 25.0 m
Let 'W' be the work done by the worker in lifting the bucket.
So, we know from work-energy theorem that, work done by a force is equal to the change in the mechanical energy of the system.
Change in mechanical energy is equal to the sum of change in potential energy and kinetic energy. Therefore,

Therefore, the work done by the worker in lifting the bucket is given as:

Now, plug in the values given and solve for 'W'. This gives,

Therefore, the minimum work that the worker did in lifting the bucket is 5060 J.