Answer:
Since the net force is to the right (in the direction of the applied force), then the applied force must be greater than the friction force. The friction force can be determined using an understanding of net force as the vector sum of all the forces.
Explanation:
Answer:
Net force: 20 N to the right
mass of the bag: 20.489 kg
acceleration: 0.976 m/s^2
Explanation:
Since the normal force and the weight are equal in magnitude but opposite in direction, they add up to zero in the vertical direction. In the horizontal direction, the 195 N tension to the right minus the 175 force of friction to the left render a net force towards the right of magnitude:
195 N - 175 N = 20 N
So net force on the bag is 20 N to the right.
The mass of the bag can be found using the value of the weight force: 201 N:
mass = Weight/g = 201 / 9.81 = 20.489 kg
and the acceleration of the bag can be found as the net force divided by the mass we just found:
acceleration = 20 N / 20.489 kg = 0.976 m/s^2
Density I'm not sure
volume unchanged
mass unchanged
shape- water
Option 4 ( R2 and R3 ) is the correct answer.
Explanation:
- In the below given diagram, we can see a circuit diagram that has four resistors such as R1, R2, R3, and R4.
- The opening of the circuit is noted as "a" and the ending is noted as "b".
- By observing the above diagram, we can clearly see that R2 and R3 are the pair of resistors that are connected in a parallel manner.
- Where all the other resistors such as R1 and R4 are neither connected in parallel nor in series.
Hence we can conclude that Resistor R2 and R3 are the ones that are connected in parallel.