Answer:
rmax/rmin = √1.127
Explanation:
F = GmM / r²
As the masses can be assumed to be constant, the force between the two is proportional to the inverse of the square of the distance between them
(Fmax - Fmin) / Fmin = 0.127
(Fmax - Fmin) = 0.127Fmin
1/rmin² - 1/rmax² = 0.127(1/rmax²)
1/rmin² = 0.127(1/rmax²) + 1/rmax²
1/rmin² = 1.127(1/rmax²)
rmax²/rmin² = 1.127
rmax/rmin = √1.127 ≈ 1.06160256...
B acid + base → water + salt
Explanation:
The best equation that represents a neutralization reaction is:
acid + base → water + salt
In a neutralization reaction, an acid reacts with a base to produce salt and water only.
Here, hydrogen combines with hydroxide to form water.
Titration is usually used to carry out this reaction in the laboratory.
An indicator is added to the base and at end the color of the reaction changes.
At this point the acids have completely been neutralized with the base.
Learn more:
Neutralization brainly.com/question/4455839
#learnwithBrainly
The light reactions could be viewed as analogous to a hydroelectric dam. In that case, the wall of the dam that holds back the water would be analogous to the thylakoid membrane.
Thylakoid membrane is present in cyanobacteria and chloroplasts of plants. It plays a crucial role in photosynthesis and photosystem II reactions.
In general, these are the regions where light-dependent reactions take place. The thylakoid membrane is a lipid-bound membrane that maintains potential difference and also controls the flow of liquids across the membrane during light reactions.
In the provided case, we can see that the wall of the dam holds back the water, similarly, in light-dependent reactions, thylakoid membranes control the liquid flow and also regulate the potential gradient across the membrane and also allow the selective proteins to pass through.
If you need to learn more about light reactions click here:
brainly.com/question/26623807
#SPJ4
Explanation:
It is given that,
The Displacement x of particle moving in one dimension under the action of constant force is related to the time by equation as:

Where,
x is in meters and t is in sec
We know that,
Velocity,

(a) i. t = 2 s

At t = 4 s

(b) Acceleration,

Pu t = 3 s in the above equation
So,

Hence, this is the required solution.
Answer:
or a roller coaster loop, if it were perfectly circular, we would have a minimum speed of vmin=√gR at the top of the loop where g=9.8m/s2 and R is the radius of the 'circle'. However, most roller coaster loops are actually not circular but more elliptical.
Explanation: