Answer:
Profile is a graphical representation of velocity distribution
Answer:
= 1.47kJ/K
Explanation: <u>Entropy</u> is the measure of a system's molecular disorder, i.e, the unuseful work a system does.
The nitrogen gas in the insulated tank can be described as an ideal gas, so it can be used the related formulas.
For the entropy, the ratio of initial and final temperatures is needed and as volume is constant, we use:




<u>Specific</u> <u>Heat</u> is the quantity of heat required to increase the temperature 1 degree of a unit mass of a substance. Specific heat of nitrogen at constant volume is
0.743kJ/kg.K
The change in entropy is calculated by
![\Delta S= m[c_{v}ln(\frac{T_{2}}{T_{1}})-Rln(\frac{V_{2}}{V_{1}} )]](https://tex.z-dn.net/?f=%5CDelta%20S%3D%20m%5Bc_%7Bv%7Dln%28%5Cfrac%7BT_%7B2%7D%7D%7BT_%7B1%7D%7D%29-Rln%28%5Cfrac%7BV_%7B2%7D%7D%7BV_%7B1%7D%7D%20%29%5D)
For the nitrogen insulated in a rigid tank:
![\Delta S= m[c_{v}ln(\frac{T_{2}}{T_{1}})]](https://tex.z-dn.net/?f=%5CDelta%20S%3D%20m%5Bc_%7Bv%7Dln%28%5Cfrac%7BT_%7B2%7D%7D%7BT_%7B1%7D%7D%29%5D)
Substituing:
![\Delta S= 3[0.743ln(1.94)]](https://tex.z-dn.net/?f=%5CDelta%20S%3D%203%5B0.743ln%281.94%29%5D)
1.47
The entropy change of nitrogen in an insulated rigid tank is 1.47kJ/K
Answer:
d) A mosfet
Explanation:
MOSFET is the most common type of insulated gate Field Effect Transistor (FET), used in electronic circuits and it stands for Metal Oxide Semiconductor Field Effect Transistor.
To configure MOSFET to act as an amplifier, a small AC signal is applied, which is superimposed on to DC bias at the gate input, then the MOSFET will act as a linear amplifier.
Therefore, the correct option is (d) A mosfet
Answer:
yes...? uhm I don't know what this means
Answer:
by principal stress theory
t = 20.226
by total strain theory
t = 20.36
Explanation:
given data
internal radius
= 150 mm
pressure p = 80 MPa
yield strength = 300 MPa
poisson's ratio = 0.3
a) by principal stress theory
thickness can be obtained as t
t = ![r_{1}\left [ (\frac{\sigma _{y} +p}{\sigma _{y} - 0.5p})^{1/3}-1 \right ]](https://tex.z-dn.net/?f=%20r_%7B1%7D%5Cleft%20%5B%20%28%5Cfrac%7B%5Csigma%20_%7By%7D%20%2Bp%7D%7B%5Csigma%20_%7By%7D%20-%200.5p%7D%29%5E%7B1%2F3%7D-1%20%5Cright%20%5D)
t = = 150\left [ (\frac{300 +80}{300-0.5*80})^{1/3}-1 \right ]
t = 20.226
b) by total strain theory
m =
m =
= 3.75
we know that
K = 



k = 1.13
1.13 = 
= 170.36 mm
t =
-
t = 170.36 - 150
t = 20.36