Answer:
Neither a or b.
Explanation:
The distributor cap is cover which protects internal parts and holds contact between internal rotor and spark plug wires. When inspecting distributor caps there should be some carbon tracking which looks like bright white grease trails.
Answer
1056
Explanation:
for example
A soil is to be excavated from a borrow pit which has a density of 1.75g/cc and water content of 12%. The G is 2.7 the soil is compacted to that water content of 18% and dry density of 1.65g/cc. for 1000 m3 of soil used in fill estimate
Quantity of soil to be excavated from pit in m3
Answer:
L = Henry
C = Farad
Explanation:
The electrical parameter represented as L is the inductance whose unit is Henry(H).
The electrical parameter represented as C is the inductance whose unit is Farad
Resonance frequency occurs when the applied period force is equal to the natural frequency of the system upon which the force acts :
To obtain :
At resonance, Inductive reactance = capacitive reactance
Equate the inductive and capacitive reactance
Inductive reactance(Xl) = 2πFL
Capacitive Reactance(Xc) = 1/2πFC
Inductive reactance(Xl) = Capacitive Reactance(Xc)
2πFL = 1/2πFC
Multiplying both sides by F
F * 2πFL = F * 1/2πFC
2πF²L = 1/2πC
Isolating F²
F² = 1/2πC2πL
F² = 1/4π²LC
Take the square root of both sides to make F the subject
F = √1 / √4π²LC
F = 1 /2π√LC
Hence, the proof.
Hello, because there is not a circuit I'll explain the voltage divider and make an exercise, this way you can solve the problem using the method described here.
Answer with explanation:
A voltage divider uses the voltage distribution among components to find a voltage in a specific element of the circuit. If we have a source V1 connected to impedances Z1 and Z2 in series, we can use a voltage divider to find the voltage across Z1 or Z2 base on their value and the input voltage.
VZ1 = V1*Z1/(Z1+Z2)
VZ2 = V1*Z2/(Z1+Z2)
In the image, to find the voltage Vo across R2 we apply the following equation: Vo = (V1*R2)/(R1+R2).
To solve the exercise in the other image, we need to apply a voltage divider twice:
In-circuit 1 we are asked to find the voltage VAB that falls on R2 and R3 (the same voltage for both resistances because are in parallel), to do so we use a voltage divider using V1, R1 and RT where RT is the equivalent resistance RT = R2//R3 + R4, therefore, for circuit two VAC = (V1*R1)/(R1+RT). After finding VAC we apply voltage divider again to find VAB, see circuit 3, to do so we apply VAB = (VAC*R2//R3)/(R2//R3 + R4) = (VAC*R2//R3)/(RT)