Answer:
119.35 mm
Explanation:
Given:
Inside diameter, d = 100 mm
Tensile load, P = 400 kN
Stress = 120 MPa
let the outside diameter be 'D'
Now,
Stress is given as:
stress = Load × Area
also,
Area of hollow pipe =
or
Area of hollow pipe =
thus,
400 × 10³ N = 120 ×
or
D² = tex]\frac{400\times10^3+30\pi\times10^4}{30\pi}[/tex]
or
D = 119.35 mm
Answer:
Explanation:
Using equation of pure torsion

where
T is the applied Torque
is polar moment of inertia of the shaft
t is the shear stress at a distance r from the center
r is distance from center
For a shaft with
Outer Diameter
Inner Diameter

Applying values in the above equation we get
x 
Thus from the equation of torsion we get

Applying values we get

T =829.97Nm
Answer:
Explanation:
The situation being described completely fails in regard to the importance of metrology. This is because the main importance of metrology is making sure that all of the measurements in a process are as accurate as possible. This accuracy allows an entire process to function efficiently and without errors. In a food production plant, each individual department of the plant relies on the previous function to have completed their job with the correct and accurate instructions so that they can fulfill their functions correctly and end up with a perfect product. If the oven (like in this scenario) is a couple of degrees off it can cause the product to come out burned or undercooked, which will then get transferred to the next part of production which will also fail due to the failed input (burned or undercooked product). This will ultimately lead to an unusable product at the end of the process and money wasted. Which in a large production plant means thousands of products in a single batch are thrown away.