<u>Answer:</u> The percentage abundance of
and
isotopes are 77.5% and 22.5% respectively.
<u>Explanation:</u>
Average atomic mass of an element is defined as the sum of masses of each isotope each multiplied by their natural fractional abundance.
Formula used to calculate average atomic mass follows:
.....(1)
Let the fractional abundance of
isotope be 'x'. So, fractional abundance of
isotope will be '1 - x'
- <u>For
isotope:</u>
Mass of
isotope = 35 amu
Fractional abundance of
isotope = x
- <u>For
isotope:</u>
Mass of
isotope = 37 amu
Fractional abundance of
isotope = 1 - x
Average atomic mass of chlorine = 35.45 amu
Putting values in equation 1, we get:
![35.45=[(35\times x)+(37\times (1-x))]\\\\x=0.775](https://tex.z-dn.net/?f=35.45%3D%5B%2835%5Ctimes%20x%29%2B%2837%5Ctimes%20%281-x%29%29%5D%5C%5C%5C%5Cx%3D0.775)
Percentage abundance of
isotope = 
Percentage abundance of
isotope = 
Hence, the percentage abundance of
and
isotopes are 77.5% and 22.5% respectively.
Answer:
6CIO2 + 3H2O = 5HCIO3 + HCI
Explanation:
The 2 in CIO2 is tiny, the 2 in H2O is tiny, and the 3 in HCIO is tiny.
The answer is the coefficient is "1".
C₅H₁₀, now you see that there is no number with this and when there is no number or digit, it means the coefficient is one.
we use the coefficients to balance the equation of the reaction in such a way that number of the atoms of the elements in the reactants are equal to the number of atoms of different elements in the product, so that both sides are equal and balanced.
think yesu ckers isn't an isomer
Answer:
2.25 M <========= I do not see this in your selection of answers !
Explanation:
Mole weight of Li F
( from periodic table ) = 6.94 + 18.998 = 25.938 gm/mole
56 gm / ( 25.938 gm /mole) = 2.15899 moles
2.15899 mole / (.959) L = 2.25 M