Kinetic energy = 1/2 * mass * velocity^2
In this case,
KE = 1/2 * 1569 kg * (15 (m/s))^2 = 176,5 kN
Answer:
The force on q₁ due to q₂ is (0.00973i + 0.02798j) N
Explanation:
F₂₁ =
Where;
F₂₁ is the vector force on q₁ due to q₂
K is the coulomb's constant = 8.99 X 10⁹ Nm²/C²
r₂₁ is the unit vector
|r₂₁| is the magnitude of the unit vector
|q₁| is the absolute charge on point charge one
|q₂| is the absolute charge on point charge two
r₂₁ = [(9-5)i +(7.4-(-4))j] = (4i + 11.5j)
|r₂₁| =
(|r₂₁|)² = 148.25
= 0.050938(0.19107i + 0.54933j) N
= (0.00973i + 0.02798j) N
Therefore, the force on q₁ due to q₂ is (0.00973i + 0.02798j) N
Answer:
it's acceleration is 0
Explanation:
since it is travelling at a constant speed it is not accelerating so its acceleration is 0