1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
diamong [38]
2 years ago
9

Identify each picture as either an inelastic collision or elastic collision

Physics
1 answer:
Ivan2 years ago
7 0

Answer:

<u>Inelastic collision:</u>

A collision in which there is a loss of Kinetic Energy due to internal friction of the bodies colliding.

<u>Characteristics of an inelastic collision:</u>

  • <em>the momentum of the system is conserved</em>
  • <em>the momentum of the system is conservedloss of kinetic energy</em><u> </u>

<em>I</em><em>n</em><em> </em><em>a perfectly elastic collision</em><em>, the two bodies </em><em>that</em><em> </em><em>collide with each other stick together.</em>

<u>Elastic </u><u>collision</u><u>:</u>

A collision in which the kinetic energy of the two bodies, before and after the collision, remains the same.

<u>Characteristic</u><u>s</u><u> </u><u>of</u><u> </u><u>elastic</u><u> </u><u>collision</u><u>:</u>

  • <em>the</em><em> </em><em>momentum</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>system</em><em> </em><em>is</em><em> </em><em>conserved</em>
  • <em>no</em><em> </em><em>loss</em><em> </em><em>o</em><em>f</em><em> </em><em>kinetic</em><em> </em><em>energy</em>

In everyday life, no collision is perfectly elastic.

__________________

ANSWER:

<u>Given examples:</u>

  • Two cars colliding with each other form an example of inelastic collision.

<u>Reason:</u>

<em>(</em><em>T</em><em>hey</em><em> </em><em>lose</em><em> </em><em>kinetic</em><em> </em><em>energy</em><em> </em><em>and</em><em> </em><em>come</em><em> </em><em>to</em><em> </em><em>a</em><em> </em><em>stop</em><em> </em><em>after</em><em> </em><em>the</em><em> </em><em>collision</em><em>.</em><em>)</em>

  • A ball bouncing after colliding with a surface is an example of elastic collision

<u>Reason:</u>

<em>(a very less amount of kinetic energy is lost)</em>

You might be interested in
The Achilles tendon, which connects the calf muscles to the heel, is the thickest and strongest tendon in the body. In extreme a
Tanzania [10]

Answer:

1) tensile stress = 76.648 Mpa

2) extension = 0.0215 m

Explanation:

Detailed explanation and calculation is shown in the image below

5 0
3 years ago
How do nerves tie the other parts of the nervous system together?
Svetradugi [14.3K]
They do it by followinng the centeral nervous system
5 0
3 years ago
A baseball is thrown at a 28° angle and an initial velocity of 70 m/s. Assume no air resistance. What is the vertical component
icang [17]

Answer:

answer is 61.8 m/s; 32.9

l am not sure

3 0
2 years ago
Which graph shows the relationship between temperature, X, and kinetic energy, Y?
strojnjashka [21]
Answer: see the graph attached (straight line, passing through the origin and positive slope).


Justification:

1) Kinetic energy and temperature are in direct proportion. That means:

i)  Being kinetic energy y and temperature x: y α x

ii) That implies: y = kx,where k is the constant of proportionality.

iii) The graph is a line that passes through the origin and has positive slope k (k = y / x).

2) The proportional relationship between kinetic energy (KE) and temperature (T) is shown by the Boltzman law, which states:

Average KE = [3 / 2] KT, where K is Boltzman's constant, whose graph is of the form shown in the figure attached.

5 0
3 years ago
Read 2 more answers
please help! find magnitude and direction (the counterclockwise angle with the +x axis) of a vector that is equal to a + c
-BARSIC- [3]

Answer:

Option (2)

Explanation:

From the figure attached,

Horizontal component, A_x=A\text{Sin}37

A_x=12[\text{Sin}(37)]

     = 7.22 m

Vertical component, A_y=A[\text{Cos}(37)]

    = 9.58 m

Similarly, Horizontal component of vector C,

C_x  = C[Cos(60)]

     = 6[Cos(60)]

     = \frac{6}{2}

     = 3 m

C_y=6[\text{Sin}(60)]

    = 5.20 m

Resultant Horizontal component of the vectors A + C,

R_x=7.22-3=4.22 m

R_y=9.58-5.20 = 4.38 m

Now magnitude of the resultant will be,

From ΔOBC,

R=\sqrt{(R_x)^{2}+(R_y)^2}

   = \sqrt{(4.22)^2+(4.38)^2}

   = \sqrt{17.81+19.18}

   = 6.1 m

Direction of the resultant will be towards vector A.

tan(∠COB) = \frac{\text{CB}}{\text{OB}}

                  = \frac{R_y}{R_x}

                  = \frac{4.38}{4.22}

m∠COB = \text{tan}^{-1}(1.04)

             = 46°

Therefore, magnitude of the resultant vector will be 6.1 m and direction will be 46°.

Option (2) will be the answer.

6 0
2 years ago
Other questions:
  • A merry-go-round rotates at the rate of 0.14 rev/s with an 84 kg man standing at a point 2.4 m from the axis of rotation. What i
    9·1 answer
  • How can you increase the gravitational potential energy between yourself and earth?
    15·1 answer
  • An 80- kg quarterback jumps straight up in the air right before throwing a 0.43-kg football horizontally at 15m/s . Sort the fol
    7·1 answer
  • When we draw a diagram of the forces acting on an extended object, the tail of the force vector for the weight should be at?
    6·1 answer
  • A sphere with a radius of 15 cm rolls on a level surface with a constant angular speed of 10 rad/s. To what height on a 30° incl
    14·1 answer
  • A uniform cylinder of radius 25 cm and mass 27 kg is mounted so as to rotate freely about a horizontal axis that is parallel to
    13·1 answer
  • Which is an example of a chemical change?
    8·1 answer
  • Where do most comets in our solar system come from?
    8·2 answers
  • How far from the earth must a body be along a line toward the sun so that the sun’s
    14·1 answer
  • A truck is traveling east at 80 km/h. At an intersection 32 km ahead, a car is traveling north at 50 km/h. How long after this m
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!