Answer:

Explanation:
Hello,
In this case, since the chemical reaction is:

We can see that hydrochloric acid and magnesium hydroxide are in a 2:1 mole ratio, which means that the neutralization point, we can write:

In such a way, the moles of magnesium hydroxide (molar mass 58.3 g/mol) in 500 mg are:

Next, since the pH of hydrochloric acid is 1.25, the concentration of H⁺ as well as the acid (strong acid) is:
![[H^+]=[HCl]=10^{-pH}=10^{-1.25}=0.0562M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D%5BHCl%5D%3D10%5E%7B-pH%7D%3D10%5E%7B-1.25%7D%3D0.0562M)
Then, since the concentration and the volume define the moles, we can write:
![[HCl]*V_{HCl}=2*n_{Mg(OH)_2}](https://tex.z-dn.net/?f=%5BHCl%5D%2AV_%7BHCl%7D%3D2%2An_%7BMg%28OH%29_2%7D)
Therefore, the neutralized volume turns out:

Best regards.
There is 6.02*10^23 molecule per mole. And there is 2 atoms per oxygen molecule. So the answer is 1.204*10^24 atoms in 1.0 mole of O2.
Chromosomes have genes that determine specific thing about a person (hair color, eye color, how tall or short a person is etc....).
Answer:
-105 kJ
Explanation:
The enthalpy change of a reaction is the sum of the energy of the bonds of the reactants and the products. The bonds at the reactants are being broken, so it's an endothermic reaction, so the bond energy must be positive.
The bonds at the products are being formed, so the process is exothermic, and the bond energy must be negative. There are being broken 1 N≡N bond and 3 H-H bonds, and are being formed 6 N-H bonds:
Reactants: 945 + 3*432 = 2241 kJ
Products: 6*(-391) = -2346 kJ
ΔH = 2241 - 2346
ΔH = -105 kJ
Answer:
Explanation:
First you will find the mole from the molarity and then the desired mass from the mole.