Answer:175⋅mL of the given sulfuric acid
Explanation:
Answer:
A - Increase (R), Decrease (P), Decrease(q), Triple both (Q) and (R)
B - Increase(P), Increase(q), Decrease (R)
C - Triple (P) and reduce (q) to one third
Explanation:
<em>According to Le Chatelier principle, when a system is in equilibrium and one of the constraints that affect the rate of reaction is applied, the equilibrium will shift so as to annul the effects of the constraint.</em>
P and Q are reactants, an increase in either or both without an equally measurable increase in R (a product) will shift the equilibrium to the right. Also, any decrease in R without a corresponding decrease in either or both of P and Q will shift the equilibrium to the right. Hence, Increase(P), Increase(q), and Decrease (R) will shift the equilibrium to the right.
In the same vein, any increase in R without a corresponding increase in P and Q will shift the equilibrium to the left. The same goes for any decrease in either or both of P and Q without a counter-decrease in R will shift the equilibrium to the left. Hence, Increase (R), Decrease (P), Decrease(q), and Triple both (Q) and (R) will shift the equilibrium to the left.
Any increase or decrease in P with a commensurable decrease or increase in Q (or vice versa) with R remaining constant will create no shift in the equilibrium. Hence, Triple (P) and reduce (q) to one third will create no shift in the equilibrium.
From the given pH, we calculate the concentration of H+:
[H+] = 10^-pH = 10^-5.5
We then use the volume to solve for the number of moles of H+:
moles H+ = 10^-5.5M * 4.3x10^9 L = 13598 moles
From the balanced equation of the neutralization of hydrogen ion by limestone written as
CaCO3(s) + 2H+(aq) → Ca2+(aq) + H2CO3(aq)
we use the mole ratio of limestone CaCO3 and H+ from their coefficients, which is 1 mole of CaCO3 is to react with 2 moles of H+, to compute for the mass of the limestone:
mass CaCO3 = 13598mol H+(1mol CaCO3/2mol H+)
(100.0869g CaCO3/1mol CaCO3)(1kg/1000g)
= 680 kg
Answer:
The following relationship makes this possible: 1 mole of any gas at standard temperature and pressure (273 K and 1 atm) occupies a volume of 22.4 L.
Explanation: