Answer:
The mixture is made up of different atoms and pure substance is made up of same type of atom.
The main difference is that mixture can be separated into its component by physical mean while pure substances can not be separated by physical process
Explanation:
Mixture:
- The properties of the mixture are not same and contains the properties of all those component present in it.
- it is a combination of one or more Pure substances and can be separated by simple physical methods.
- it have varying boiling and melting point
Examples are:
- mixture of salt and sand
- Salt water is mixture of water and NaCl and can be separated by physical mean.
- Alloys: its a mixture of different metal
- Air: mixture of gases
Pure Substance:
Pure substances are those made of same type of atoms all elements and compounds are pure substances.
- it can not be separated by simple physical mean
- it have very constant and consistent melting and boiling point
Examples are:
- Water : contain only water molecule
- All elements: all elements are pure substance made of same atoms
- All compounds: can not be separated by physical mean.
Answer:
The number of formula units in 3.81 g of potassium chloride (KCl) is approximately 3.08 × 10²²
Explanation:
The given parameters is as follows;
The mass of potassium chloride produced in the chemical reaction (KCl) = 3.81 g
The required information = The number of formula units of potassium chloride (KCl)
The Molar Mass of KCl = 74.5513 g/mol

Therefore, we have;

1 mole of a substance, contains Avogadro's number (6.022 × 10²³) of formula units
Therefore;
0.051106 moles of KCl contains 0.051106 × 6.022 × 10²³ ≈ 3.077588 × 10²² formula units
From which we have, the number of formula units in 3.81 g of potassium chloride (KCl) ≈ 3.08 × 10²² formula units.
Answer:
101,37°C
Explanation:
Boiling point elevation is one of the colligative properties of matter. The formula is:
ΔT = kb×m <em>(1)</em>
Where:
ΔT is change in boiling point: (X-100°C) -X is the boiling point of the solution-
kb is ebulloscopic constant (0,52°C/m)
And m is molality of solution (mol of ethylene glycol / kg of solution). Moles of ethylene glycol (MW: 62,07g/mol):
203g × (1mol /62,07g) = <em>3,27moles of ethlyene glycol</em>
<em />
Molality is: 3,27moles of ethlyene glycol / (1,035kg + 0,203kg) = 2,64m
Replacing these values in (1):
X - 100°C = 0,52°C/m×2,64m
X - 100°C = 1,37°C
<em>X = 101,37°C</em>
<em></em>
I hope it helps!
Yes because look in the book dh